Cookbook for Developers of
ArgoUML

An introduction to Developing ArgoUML

Edited by Linus Tolke
Markus Klink

Cookbook for Developers of ArgoUML: An introduction to

Developing ArgoUML
by Linus Tolke and Markus Klink

The purpose of this Cookbook is to help in coordinating and documenting the development of
ArgoUML.

This version of the cookbook isloosely connected to the version 0.20 of ArgoUML.

Copyright (c) 1996-2006 The Regents of the University of California. All Rights Reserved. Permission to use, copy, modify, and
distribute this software and its documentation without fee, and without a written agreement is hereby granted, provided that the
above copyright notice and this paragraph appear in al copies. This software program and documentation are copyrighted by The
Regents of the University of California. The software program and documentation are supplied "AS |S", without any accompany-
ing services from The Regents. The Regents does not warrant that the operation of the program will be uninterrupted or error-free.
The end-user understands that the program was developed for research purposes and is advised not to rely exclusively on the pro-
gram for any reason. IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIR-
ECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING
OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA
HASBEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY
DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON
AN "AS1S" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

L ChANGELOY ettt e viii
O | g oo [T 1 o o PP 1
0 1 7= 11 PP 1
7N AN oo U | 10T o]] <ot 1
1.3, HOW t0 CONEIIBULE ... 1
1.4, About this COOKIBOOKccuuuiiiiiiii e 3
1.4.1. In this Cookbook, you Will find...cccoiiiiiiii e, 3
1.4.2. In this Cookbook, you will not find...coiviiiiii e, 3

L5 MaAIING LISES ettt et e e e e e e e 4
A =10] o [T o T 0] A= LU o= P 5
250 B O U o G = 5
A o (= o= 1 o] 1= 5
2.2.1. Whichtoolsdo | need to build ArgoUML?cooiiiiiiiiiiiiiiicce e 5
2.2.2. Which tools are part of the ArgoUML development environment? 6

2.2.3. What libraries are needed and used by ArgoUML?ccoviiiiiiiiiiiiiiiiiiis 7

2.3. Download from the CV S rePOSItONYcvvieieiei i aae e 7
P TN o e oo =P 8
2.4.1. How ANT isrun from the ArgoUML development environment 8
2.4.2. Developing in @ SUDPIOJECEuuiiiiiiiieiiii et 11
2.4.3. Troubleshooting the development buildccooviiiiiiiiiiii e, 13

2.5, ThE JUNITLESE CASES ...evtiiiiti ettt e e e e e ean e aeees 14
251 HOW tO WHLE @TESE CASE ...univiiiiii et 14

2.6. MANUAl TESE CBSES 1.vvvueeiitieeeeiii ettt e et e ettt e e et e e et e e e eab e e e eaa e eeennns 17
2.6.1. RuNning the manual tESESocvuuiiii e e 17
2.6.2. Writing the manual tESESuiiiiiiiiieiii e 17
2.6.3. Thelist Of tESES ..oevniee e 18

2.7. Generating dOCUMENTALTIONiiueieii et e e 19
2.7.1. How the ArgoUML web SIteWOrkscoovviviiiiiiii e, 19

2.7.2. The ArgoUML dOCUMENLEEIONvuvevneiiieciieeee e e e e e e e e e 20

2.7.3. How we work with documentationcooeeeuinieiiiiinieiiiineecei e, 21

2.8. MAKING ATEIEESE ...oeevi it 22
2.8.1. Therelease did NOt WOFKooouuiiiiieiiei e 26

3. ArQOUML FEQUITEIMENLS ... etteeeteeet et e ettt e et e e et e et et e e e e e et e e et e e e eeannas 28
3.1. Requirementsfor Look and feelccooviiiniiiii i 28
3.1.1. When multiple visual components are showing the same model element they

shall be updated in a consistent manner throughout the application. 28
3.1.2. All views of a model element shall be update as soon as the model element is
0700 = = o H PP UP PP TUPPPTTRPPPN 28
3.1.3. Editable views of the model should update the model on each keystroke and
MOUSE ClICK. ..ttt eees 28
3.1.4. Any text fields that require validation should not be editable directly from a
AT PSP 29
3.1.5. With dialogs, the model is not updated until the dialog is accepted by the user

WIth valid fields. ..o 29
3.1.6. The user shall receive some visual feedback during the edit process of textual

UML to indicate whether the text represents valid UML syntaX.coeeeee. 29

3.1.7. There shall be no indication of an exception on the screen or in the log if it has
occured merely because of auser mistyping or not being aware of UML syntax. ... 29

3.1.8. All text fields shall have context sensitive help.ccoooviiiiiiiiiiennn, 30
3.2. ReqUIreMeNntS FOr UMLuuiiiiiiie e 30
3.2.1. ArgoUML shall be a correct implementation of the UML 1.4 modd. 30
3.2.2. ArgoUML shall implement everything in the UML 1.4 model. 30
3.3. Requirements N javaand JVIMocoeeieiiiiiiii e 30

Cookbook for Devel opers of ArgoUML

3.3.1. Choice of JRE: ArgoUML will support any JRE compatible with a Sun specific-
ation of any JRE from Sun that has not begun the Sun End of Life (EOL) process. . 30

3.3.2. Download @and Startoeeeeieiiiiee e 31

3.3.3. Console output: Logging or tracing information shall not be written to the con-

sole or to any file unless explicitly turned on by theuser.ccoocooiiiiis 31
3.4. Requirements set up for the benefit of the development of ArgoUML 31

3.4.1. Logging: The code shall contain entries logging important information for the
purpose of helping Developers of ArgoUML in finding problems in ArgoUML itself.

... 31

4. ArgoUML Design, The Big PICIUIEiiiiiiiiiiii e 32
4.1, Definition Of SUDSYSIEMuniieiiii e 32
4.2. Relationship of the SUDSYSIEMSoouiiiiii e 33
4.3. LOW-1eVEl SUDSYSIEMScevici e 34
4.4, MOdEl SUDBSYSIEIMSceenci e 35
4.5. View and Control SUDSYSIEMScoeuuuiiiiiiie e 35
4.6. L0adable SUDSYSIEMSuiiiiiiiie e 36
5. INSIAE thE SUDSYSIEIMS ...t et e e e 38
ST I 1 o o L= P 38
TN I o 0 =S PR 39
DL 2 HEIPEIS e 39
5.1.3. The Model @VENE PUMPuuiiiiiie e 39
5.1.4. NSUML SPECITICS .eeieiiniiiiieeeie ittt eeaeeeaes 43
5.1.5. How to work against the modelc.ooiiiiii 43

TN LG T 101V o (o TN 44

5.2. Critics and other cognltlve 100 0] 45
5.2.1. Main classes .. 45
32 o o Ve (o N 47
523. org.argouml .cognitive.critics.* classdiagramcccoeveveivinieiiiiineeniiinnnn. 49

R DT -1 TP 50
5.3.1 MUlti @ITOF PANEeeviieiiie et 50
5.3.2.Howdo | add anew elementto adiagram?cccoveveviieeiiieiiiierineennnn, 52
5.3.3. Howtoadd anew Fig ...ccouviiiiiiiii e e 52

5.4, ProPerty PANEISoeeiiieeiiii et 54
5.4.1. Adding the property panel ..o 55

D5 PEISISEENCE ... et 68
X O o] 7= 1 o o E PP 69
5.7. Reverse Engineering SUDSYSIEMcovuiiiiiiiii e e 71
5.8. Code Generation SUDSYSIEMcvvuieiieei e e e e e e e e e e ees 71
5.9. Java- Code generations and Reverse ENginNEeringc.uuvvevevineeiiiiiieeeiiieeeeeiien 72
e N o oV (o N PP 72
5.9.2. Which sources are involved? ... 72

5.9.3. How isthe grammar of the target language implemented? 73
5.9.4. Which model/diagram elements are generated?cccoeveeeiviiiiicvinennnnn. 73

5.9.5. Which layout algorithm isused?ccoovviiiiiiinii e, 73

5.10. Other [aNQUBGESvuueeiiiiieeeee ettt ettt eeaans 75
511 THE GUI ettt a e e e et 76
I AN o) o) o= (o o H TP 77
5.12.1. What isloaded/initialiZed?ccouiiiiiiiiiiiiiiiie e 77
5.12.2. DELAISPANE .. .evvnieii it 77
D13 HE D SY S OIM e 77
5.14. INternationaliZBHONc.uieieieie e 78
5.14.1. Organizing traNSIAEOIScccuuuneeeitieeeeei ettt e e e eeeens 78
5.14.2. Ambitionsfor [0CAlIZALIONceeiiei e 79

oI 7 A T 11V o (o N 80

L300 LT 1o o 1 o 82
5.15.1. What to LOg in ArgoUML ...viiinii e e 82
5.15.2. HOW t0 Create LOg ENtriES...uieiiiiiiieiiii e 83
5.15.3. HOW t0 ENabl@ LOGUiNG... .cevvvuneiiiiieeiiiiie ettt 85

Cookbook for Devel opers of ArgoUML

5.15.4. HOW t0 CUStOMIZE LOGGING... +evvvuerernieiineeiinieeeeeeaieeeeieeeiee et aeeanneeannas 86

I T B = 1= o= PSP 86

5.16. IREWIth ULTIIS ..o e e e 87

LI I o Yo (o T | (= 1 < PP 87

I RS o d o] o] (= P 87
5.18.1. REQUITEMENTSeuiiti ittt ettt et e et e e e aenas 87

5.18.2. PUDIIC APISANA SPIS ..ooviiiiiiiiieeiii e e 88

5.18.3. Details of the Explorer Implementationc.ccovvvviiveiiiieeiiierieeeannn, 88

5184 HOW O | .2 e e e 89

RS I oo 11 [T L= PP 90
5.19.1. What the ModuleLoader dOESoieuniiiiiiiiieii e 0

5.19.2. Design of the new Module Loadercocovveiiiiiiiiiiiieeeeee e, 90

B.20. OCL .ttt a e aaann 92

L (1= 1o [g AN o o110 1Y 93
L300 I o o Vo (o N 93

6.2. MOAUIES AN PIUGINS ...ttt 93
6.2.1. Differences between modulesand plugingcccoevviiiiiiiiiiiiiiniiineeennn. 93

B.2.2. MOAUIBS ... e 94

B.2.3. PIUGINS .oeniiiiiiii e 97

6.2.4. Tip for creating new modules (from Florent de Lamotte) 100

6.3. How are modules organized inthe javacodecooooevviiieiiiiiiieiiiiiicciieees 100
6.3.1. RequirementS ON MOAUIESuuiiiiiiieiiii e 100

B.3.2. HOW 0O | 102 oo e e e 101

7. Organization of ArgoUML doCUmMENtationc.uvvuneiieiieiiei e e e aee e 103
7.1 OVEIVIEIW et e e et e e et e e e e et e e e e et e e e aett e e e eataaeeee 103
7.2.USer ManUal PIaNSccoeiuiiiiiiii e e 104
7.2.1. Target Audiencesfor the User Manualccoovviiiiiiniiiiiiinieciieees 105

7.2.2. GoasfortheUser Manualcoooeuiiiiiiiiiiiiei e 105

7.2.3. Suggested Manual SEUCIUIEc..uveuieiieec e 105

7.2.4. Actions, Prioritiesand QUESHIONScocviiiieiiieiiie e, 107

8. CVSINthe ArgOUML PrOJECE ...vvuuiiiiiiii e e e e e e e e e e e eees 108
8.1. How to work against the CV S repoSItOrycocvvvvevieeiieiiiieeeieein e e e 108

8.2. Creating and USING BranChesooiiiiiiiiiii e 109

8.3. Other CV S COMIMENES ...ttt et e et e e eanas 111

R N GAVAST (= o oS | (0] VA w0 1= 0|k J PP 112

9. Standards for coding iN ArgOUMLouiiiiii e 116
9.1. Rulesfor writing JAVA COEcccuuiiiiiieiii e e e 116

9.2. Rulesfor the building PrOCESScvuiiiiiieiie e e 119

9.3. Checklist for using SUD-ProdUCLSveiiiiiiiiiii e 119

9.4. SEttingSTOr ECHPSE 2 ...t 121

9.5, SettingSfOr NEtBEANSccvuiiiii i e 122

0.6. SettingSTOr EMACS .. .uuiiii e e s 122

9.7. HOW to WOrK With ECHIPSE 3 ...ceii e e 123
9.7.1. Checking out through ECHIPSE .. .vvvuivii e e 123

9.7.2. Eclipse to help with the ArgoUML coding Stylecccuovveiiiinieiiiiinnenes 126

9.7.3. Eclipse to automatically find problemsinthecodeccccoooveeiiinnes 127

9.7.4. Settings for CheCKCliPSe ..uiiei e 128

9.7.5. RUNTNE JUNITTESESeniiiie i 128

10. Standards For Documentation WItiNgcc.uiiviuieeiiieiii e e e e e e 130
05 T 11 oo 01 o o ORI 130

10,2, Yl et 130

10.3. DOCUMENt CONVENTIONScuueeiteeei e ettt e e e et e e et e e e e e e e eannns 130

10.4. DOCBOOK CONVENLIONScuiiitteeiieeei et et e et e et e e e e e e e e e e eeenas 131

10.5. FOr EMBCSUSENS ...oiiiiiieitieitie ettt ettt et e e e e e e e e e eans 132

11. Processes for the ArgoOUML PrOJECEcvvuneiiiiiii e e e 133
11.1. The big picture for ISSUESccvviiieii i e e e 133

11.2. AttriDULES Of @NISSUE ...vuiieeice e 134
N T = Lo =PRI 134

Vi

Cookbook for Devel opers of ArgoUML

11.2.2. RESOIULIONS ...ueviieiiie e i e e e e e e e e e e e e e et e s e e e aneanaen 135

11.3. ROIES Of TREWOTKEN'Scvieieeieie et ee et e e e e e e e e e enas 136
11.3.1. TRE REPOIEN ..neeiiiie ettt 136

11.3.2. TRE RESOIVEL ..o e s 137

R R T N o (Y= 1 1= SR 138

11.4. HOW tO rE€SOIVE AN ISSUEenviieiiiii it eaaas 138

11.5. How to verify an Issuethat ISFIXEDcocoviiiiiiiiiiiiece e 139

11.6. How to verify an Issuethat iSrglectedcocevvveiiiieii e 140
11.7. HOW tO ClOSE AN ISSUEeiieieieie ettt ettt e e e e e e eaanas 140

11.8. How to relate issues to problems in subproductscceeeeeeviineeiiiiineeeennnnnn. 141
1070 L= G 143
AL FUher REAAING ...oe i e e 145
A.L. Jason RODDINS DISSEtAtiONvuiieiieiiiiei e e e e aneanas 145
R 0 LY o1 1 o N 145

AL2. WHhErEtO fINA T oeeieieie i e e 145

A.2. Martin SKINNErS DISSEITAliONeueeienitieee e ee e e e e e e e anens 145
YN A o 1= i o R 145

A.2.2. Whereto FINA It ...vieieii e 145

Vii

Change Log

Thiswill aso be alog of major design decisions. A major design decision is a decision that changes re-
sponsibilities or functions of the subsystems.

Table 1. Changes done

When

What

Who

2005-10-29

2005-07-22
2005-07-19

2005-07-18

2005-06-18

2005-06-15

2005-06-12

2005-06-11

2005-05-23

2005-05-06

2005-05-01

2005-04-29

2005-03-10

2005-03-06

2005-03-01
2005-02-01

Change to the instructions on how to build ArgoUML to describe
how it works with the argouml-mdr project. (See Chapter 2, Building
from source and Section 9.7.1, “ Checking out through Eclipse”).
Removed the /modules/junit. (See Section 2.8, “Making arelease”).

Change to the descriptions of the Model, Diagrams, and Persistence
subsystems (See Section 5.1, “Model”, Section 5.3, “Diagrams’, and
Section 5.5, “Persistence”).

Design decision -
2005-07-14

The Diagrams subsystem does not store any data. All
datait works on is stored in the Model subsystem.

- Bob Tarling

Change to the short list of subsystems and responsibilities. (See
Chapter 5, Inside the subsystems).

Restructured: all main chapters are now in seperate files. No content
changes.

Change to how internationalization is done. Subprojects. (See Sec-
tion 5.14, “ Internationalization”).

Change to the description on how to set up an Eclipse environment.
(See Section 9.7.1, “ Checking out through Eclipse’).

Change to how to make an announcement. (See Section 2.8, “Making
arelease”).

Change to release building description. (See Section 2.8, “Making a
release”).

Added instructions on how we work with sub-projects. (See Sec-
tion 2.4.2.2, “Working in a subproject” and Chapter 8, CVS in the
ArgoUML project).

Change to the tools for releases. (See Section 2.8, “Making a
release”).

Added a diagram explaining Explorer. (See Section 5.18.3, “Details
of the Explorer Implementation™).

Change to process for verifying issues. Any release after the one
where the issue is fixed can be used for verifications. (See Sec-
tion 11.5, “How to verify an Issuethat is FIXED").

Change to description of how to build. sr ¢ directory is now in-
volved. (See Chapter 2, Building from source).

Removed the modules component. (See 10).

Change to Model subsystem. (See Section 5.1, “Model” [38], Sec-
tion 5.3, “Diagrams’). Added the Persistence subsystem. More work

Linus Tolke

Linus Tolke
Linus Tolke

Linus Tolke

Michiel
Wulp
Linus Tolke

van

Linus Tolke
Linus Tolke
Linus Tolke

Linus Tolke

Linus Tolke

Michiel
Wulp
Linus Tolke

van

Linus Tolke

Linus Tolke
Linus Tolke

der

der

viii

Change Log

When

What

Who

2005-01-30

2005-01-29

2005-01-26

2005-01-07
2004-12-30

2004-11-01

2004-10-29

2004-10-19

2004-10-11

2004-09-17

2004-09-16

2004-09-15

2004-08-17

2004-08-17

2004-08-02

2004-07-28

2004-07-25

is needed. (See Section 5.5, “Persistence”).

Change to the description on how to use the Model subsystem, the
Model Facade does not exist anymore. (See Section 5.1.5, “How to
work against the model”).

Change to Model subsystem chapter. Removed references to Um-
|EventPump and clearified how to remove elements using the Uml-
Factory. (See Section 5.1.3.2.1, “ How do | register a listener for a
certain type event ” and Section 5.1.5, “How to work against the
model”).

Change to requirement of JDK version support. (See Section 3.3.1,
“Choice of JRE: ArgoUML will support any JRE compatible with a
Sun specification of any JRE from Sun that has not begun the Sun
End of Life (EOL) process.).

Added copyright noticesto thefiles.

Change the default year in the copyright notices. Yes, | am a little
early. (See Chapter 9, Sandards for coding in ArgoUML and Sec-
tion 9.7, “How to work with Eclipse 3").

Change to the way we generate documentation. The FILENAME.id
files are no longer used. (See Section 2.7, “Generating documenta:
tion”).

Change to the description on how to generate documentation. Better
explanation of how it works. (See Section 2.7, “Generating docu-
mentation”).

Change to How to Contribute. Changed some spelling errors in cook-
book.in while at it. (See Section 1.3, “How to contribute™).

Changes to description of module loader making the new module
loader a fact. (See Section 5.19, “Module loader” and Section 6.2,
“Modules and PlugIns”).

Change to the description on how to extend ArgoUML. Now module
loader described. (See Chapter 6, Extending ArgoUML).

Changed the meaning of RESOLVED/LATER. (See 10 f and g in
Section 2.8, “Making arelease”, and Section 11.2.2, “Resolutions”).

Change to design of new module loader. (See Section 5.19.2,
“Design of the new Module Loader”).

Deemphasized the layers and instead describe the subsystems in
groups according to the MV C-pattern. (See Chapter 4, ArgoUML
Design, The Big Picture and Chapter 5, Inside the subsystems).

Change to the definition of the priorities. Now they are defined in
terms of how much release blocker they are. (See Section 11.2.1,
“Priorities”).

Added rationale for not using RESOLVED/REMIND or RE-
SOLVED/LATER (See Section 11.2.2, “Resolutions”).

Reorganized the description on how to use Eclipse 3. Added instruc-
tions on how to use the Eclipse JUnit test runner. (See Section 9.7,
“How to work with Eclipse 3”).

Added this Change Log. (See Change Log).

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke
Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Linus Tolke

Chapter 1. Introduction
1.1. Thanks

We, the authors, would like to take the opportunity to thank everyone involved in the creation of this
documentation, and especially the people behind setting up the DocBook environment. In particular
thanks go out to Alejandro Ramirez, Phillipe V anpeperstraete and Andreas Rueckert. Thank you!

1.2. About the project

ArgoUML is an open source project, so it depends on people that volunteer to work on it. Especialy in
the area of development thereis still so much to do!

This Cookbook is dedicated to everyone interested in taking part in the ArgoUML project as such and

should help to transfer the knowledge from the old experts to them. Please feel free to discuss the
ArgoUML project and this Cookbook on dev mailing list [mailto:dev@argouml.tigris.org]!

1.3. How to contribute

You can help, there are big tasks and small tasks waiting for you.
Here is a suggestion on how you could become part of the ArgoUML Project. This could be perceived
as aladder to climb but remember that if so it is firstly aladder of levels of commitment and time spent
by you. Y ou get no prize for climbing higher, you just get more responsibility in the project.
1. UseArgoUML.
2. Report found bugs.
There are bugs in ArgoUML. When you use ArgoUML you might encounter them where you least
expect it. To help, make sure they are known about i.e. that there exists an issue in Issuezilla de-

scribing the problem. Y ou need to be a registered user at Tigris to report bugs but notice that to add
further comments to the issue you also need to have gotten a Role in the ArgoUML project.

3. Subscribe to the users mailing list.

Discuss how you use ArgoUML in your project and how you promote ArgoUML in your organiza-
tion. You can aso help other users with their ArgoUML -related problems.

4. Apply for an Observer role.
This shows that you are committed to the project and also allows you to comment on issues.
5. Familiarize yourself with the project and how we work.
Suggestion on how to go about this:
a. Read through most of the User manual and install and run the latest version of ArgoUML.
b. Subscribeto theissueslist.

You will get updates on all issues so you can monitor what we are doing in the project. (It
could be alot of mails. If it turns out you don't like watching issues in this way, you unsub-

mailto:dev@argouml.tigris.org

Introduction

h.

scribel)

Subscribe to the CVSlist.

You will get updates on all changes that are done to code, documentation, and the web site. (It
could be alot of large mails. If it turns out you don't like watching what is going on in the
project in this way you unsubscribe.)

Read the process part of the Developers Cookbook at Chapter 11, Processes for the ArgoUML
project.

Thiswill give you the idea of how the ArgoUML project attempts to release with good quality
and especially how we use I ssuezilla.

Get the Observer role granted.
From this on you can comment on bugs yourself directly in Issuezilla.

You can aso verify issues according to the verification process (see Section 11.5, “How to
verify an Issuethat is FIXED").

This will help you understand the terminology used in the project and also gives you an idea
of the current quality of ArgoUML and what needs to be done in the future.

Thisis aso avery low-commitment level task that could be completed in a couple of minutes
(depending on your choice of issue).

Read the rest of the Devel opers Cookbook.

Thereisalot of stuff discussed in here that is interesting for your understanding of the project
and the code.

Check out the source from CV S and build.

Subscribe to the dev list.

The purpose of thisis to see what the developers are discussing in the project.

Monitor the discussions and as soon as you see something discussed where you have an opinion,
jumpright in!

Familiarize yourself with the code.

For this a good knowledge of Javais more or less a prerequisite.

Suggestion on how to go about this:

a

b.

Take active part in the discussions on the dev-list.

Solve issues registered in Issuezilla.

Convince someone to commit your changes.

Establish a relationship with one developer that has volunteered to help you with the commits.
That developer will check that your code reaches the quality level that we strive for in the
project and obeys the design.

Repeat.

Introduction

This can go on until the developer helping you knows that you have good knowledge of the
project quality and design and the main problem for you two is that the sending, waiting, com-
mitting, updating et.c. is extrawork.

8. Apply for aDeveloper role.

This alows you to do commits on your own and you can how increase the pace in which you are
working while also increasing your responsibilitiesin the project.

This role is granted by the Project leader after he is convinced that you have learned the enough
about the project w.r.t.:

» Understanding and accepting the goals.
« Understanding where we are in the devel opment process.
* Understanding the terminology used in the project.
e Understanding how we use CVSin the project.
* Understanding the set of tools (ant, JUnit) and how to use them.
9. Focusyour work in a specific area.
Everybody has different interests and the best contribution is made when someone is allowed to
pursue his own interests. Hopefully ArgoUML provides you with interesting challenges to your
taste.
10. Accept responsibility for a specific area.

With this you are part of the core team devel oping ArgoUML.

1.4. About this Cookbook

1.4.1.

1.4.2.

This document, the Cookbook for Developers of ArgoUML, is provided with the hopes of being helpful
for the developers of ArgoUML when it comes to learning and understanding how ArgoUML work in
order to improve on its functions and features. It can also be of interest for persons that wish to analyze
the ArgoUML project for whatever purpose that may be.

In this Cookbook, you will find...

Information on how to compile ArgoUML. (Chapter 2, Building from source)

Information on how different features of ArgoUML are implemented and how they are to be used.
(Chapter 4, ArgoUML Design, The Big Picture and Chapter 5, Inside the subsystems)

Information on how you should write extensions to ArgoUML. (Chapter 6, Extending ArgoUML)
Information that you, as a developer of ArgoUML, need to know about how to contribute. (Chapter 9,

Sandards for coding in ArgoUML, Chapter 10, Sandards For Documentation Writing and Chapter 11,
Processes for the ArgoUML project)

In this Cookbook, you will not find...

Introduction

Y ou will not find information on how to install and use ArgoUML.
Y ou will not find information on what UML isand if or how you should useit in your project.

Y ou will not find information on how to convince your project to use ArgoUML as a modeling tool.

1.5. Mailing Lists

All developers MUST subscribe to the mailing list for developers. Please find the details at: ht-
tp:/fargouml tigris.org/servlets/ProjectMailingListList
[http://argouml tigris.org/servlets/ProjectMailingListList]

It is also recommended to join the CV'S and Issues mailing lists. Both give you a good idea of what is
going on. Developers should also work with Issuezilla registering or fixing problems found by them-
selves and others.

http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList

Chapter 2. Building from source

Building ArgoUML from source requires a CV S client, a current JDK (1.4 or later), and 150MB of free
disk space. All other tools, including the Ant build tool upon which the build is based, are included in
the project source tree. If you have these tools and are familiar with them, the next section contains
quick instructions to build ArgoUML from source. For more detailed directions follow that.

2.1. Quick Start

If you are using Eclipse 3.0 or later, see Section 9.7, “How to work with Eclipse 3" for quick setup in-
structions.

If you are using Windows, the follow commands will build ArgoUML from source and run it. If you us-
ing Unix/Linux, the comparable commands modified slightly for your particular shell will do work.

rk>set CVSROOT=: pserver:guest @vs.tigris.org:/cvs

rk>cvs | ogin (use guest as password)

rk>cvs checkout argoum /src argoum /src_new argoum /tools argoum /lib argoum
rk>set JAVA HOVE=C:\ Pr ogr ans\j dkwhat ever

rk>cd argoum \ src_new

rk\ argoum \ src_new>bui | d package

rk\argoum \'src_new>cd ..\..\argoum - ndr

rk\ argoum - ndr>bui I d install

rk\argoum - ndr>cd ..\argoun \src_new

Wor k\ ar goum \ src_new>bui Il d run

535555555

2\
-\
-\
-\
-\
-\
:\
2\
2\
\

QOOO0000O00O0O0

A newly compiled ArgoUML will open in anew window.

Notes:
. Tip
1 JDK 1.4 or later isrequired
. Tip
1 On Windows, the directory path for the JDK installation directory must not contain any
spaces.

That was the compact version for Windows + JDK. (Note: JDK cannot be installed in a directory that
contains space in its name.) Modifying these steps dightly as appropriate for your shell should work on
Unix/Linux systems as well.

If you don't understand these instructions or they don't work, please read the rest of the chapter for more
detailed instructions on how to build ArgoUML.

2.2. Preparations

In order to develop with ArgoUML it is absolutely mandatory to get the CV'S version of ArgoUML.
How thisisdone is described in Download from the CV S repository.

Notice that the CV'S contents is not only a set of source files but instead it is the complete devel opment
environment for all work within the ArgoUML project.

2.2.1. Which tools do | need to build ArgoUML?

5

Building from source

These are the tools not included in the CV S repository that you need to work with ArgoUML.

» A computer with an Internet connection and free disk space for your work.
100MB is enough to download everything from the repository. (Currently March 2003 it is 68MB).
150MB is enough to download all and build the tool and the documentation. (Currently March 2003
itis114MB). 250MB is enough to build it al (Javadocs, documentation, classes, packages, ...).

* CVSfor getting the files and committing source code updates (or an IDE with a CV S client built-in).

« JDK, at least version 1.4.2 (includes the Java compiler)
For building the documentation from DocBook format, you futhermore needs these tools:

» DocBook XSL style sheets.

There exists rules in the ar gounm / docunent ati on/ bui | d. xml for downloading this cor-
rectly.

o Jimi
Used by FOP for including PNG pictures.
Detailed instructions:

1. Download the fileji m 1_0. zi p from java.sun.com [http://java.sun.com/products/jimi/]. It
containsafile:" Ji m ProCl asses. zi p".

2. Copy thisfileintothear goum \ t ool s\ | i b directory.

2.2.2. Which tools are part of the ArgoUML development
environment?

These tools are provided by the development environment that you get when you check out from CVS.

e Ant, thetool to manage compiling and packaging.

* mdrant, theintegration allowing to run mdr from ant.

* ANTLR, for regenerating the built-in parser.

* JUnit, for running the JUnit test cases.

» JDepend, for examining the code.

For building the documentation from DocBook format, these tools are also provided with the develop-
ment environment that you get when you check out from CVS.

» Saxon for building documentation from DocBook format.

» fop for generating PDF versions of the DocBook format.

http://java.sun.com/products/jimi/

2.2.3.

Building from source

To build a PDF file with the pictures included you need Jimi that is downloaded separately. See
Jimi.

What libraries are needed and used by ArgoUML?

These libraries are provided in the development environment that you get when you check out CVS.
They are checked by the Java compiler when compiling, needed for running ArgoUML and therefore
distributed with ArgoUML.

» NSUML, the Novosoft UML library.

The ArgoUML project doesn't develop the Java classes for storing, saving and loading an UML
Model. That work is done by NSUML and is used by ArgoUML.

» GEF graph editing framework, available from gef.tigris.org [http://gef tigris.org].
It is also recommended that you check out GEF at the same time as you check out ArgoUML be-
cause many things in Argo relate to GEF and it is quite handy to have the source code available.
GEF isasoresiding at Tigrisso you cando asimplecvs-d :user @vs.tigris.org:/cvs
co gef (with the same checkout arguments you had when you checked out ArgoUML) to get it.

» The OCL package to parse and run the Object Constraint Language things.

Details about the package are available from SourceForge OCL Compiler
[http://dresden-ocl.sourceforge.net/].

» logdj, alibrary with infrastructure for logs.
» antlral, the run-time part of the ANTLR tool.
* MDR, the Netbeans Meta Data Repository.

Thisisincluded in the files jmi.jar, jmiutilsjar, mdrapi.jar, mof.jar, nbmdr.jar, openide-util.jar from
the argouml-mdr subproject.

2.3. Download from the CVS repository

The CVS repository at Tigris is accessible using the pserver protocol. The CVS root is / cvs at
cvstigris.org. You use your Tigrislogin and Tigris password.

The first thing you will need to do, is select the CV'S client. Most of the description below is about the
command line CV Stool, which is available for most operating systems.

Whatever tool you use, do not checkout into a directory that contains spaces in a directory name some-
wherein the path! E.g. c: \ Docunents and Settings\...\M Docunents\Java Devel -
opnent\ violates this advise 3 times. Reason: You can not build the documentation. (BTW: Building
ArgoUML itself works.)

In case you use the command-line CV S client, the above means that you will set the CVSROOT-variable
to: pserver:|logi n@vs.tigris.org:/cvs wherel ogi n isyour Tigris login. This needs to
be done before the first checkout. After that the root will be remembered by the checked out copy.

If you use one of the CV'S clients with a graphical user interface, (like WinCV'S, GruntSpud, ...), or an
IDE with a built-in CVS client (like Eclipse or NetBeans) then configuration will be done by filling in

7

http://gef.tigris.org
http://dresden-ocl.sourceforge.net/

Building from source

fields. These fields mean the following:

e Type: pserver
» User: Your Tigrislogin name
» Host: cvstigris.org

* Repository: /cvs

If you used the command line CVS client before, then your Tigris password is stored in the file
~/ . cvspass. Some graphical Ul CVS clients are able to use this password, in others you'll have to
enter it again.

The next thing to do is to login. It is done using the command: cvs login. This only needs to be done
once and then the account on your machine remembers this.

Then you do the actual checking out. cvs checkout di rectory .

The CVS repository directories you need to check out to work with ArgoUML are ar gouml /| i b,
argoum / t ool s, argoum / src_new, ar goum / src,ar goun - mdr , and ar goum / t est s.

If you just want to build the documentation you check out the directories ar gourd / 1 'i b, ar goum /
t ool s andar gounl / docunent at i on.

If you want to work with any of the web sites you check out the corresponding directory ar goum /
www;, or ar goum - ndr / www.

If you value your time more than bandwidth and diskspace, just check out the top-level ar gouni
project and the mandatory ar goum - mdr sub-project. This triples the size of the download, mainly
due to theimagesinthear goum / docunent at i on and ar gound / www, but minimizes the number
of separate CV'S commands.

If you don't want to acquire a Tigris login to do this you can use the "guest" account with the password
"guest". Since the checked out copy remembers the login you used to do the check out, if you do this,
you will have to remember to delete this copy and start over if you get a developer role in the project
and want to do commits directly.

2.4. Build Process

The standard ArgoUML build process is driven by Apache Ant, and it is highly recommend that you
stick to that. Some devel opers use the integrated build tools of Eclipse and NetBeans, but always make
sure that your work compiles with the standard Ant build process. There are also some Java files gener-
ated by magic scriptsin Ant that you need to create before opening with the IDE.

Ant is a tool written in Java developed for Apache that reads an XML-file with rules telling what to
compile to what result and what filesto include in what jar-file.

Therulefileisnamed bui | d. xm . There is one of those in every separate build directory (ar goum /

src_new, argoum /src/whatever , argoum -ndr, argoum /docunentation, and
ar goumn / nodul es/ what ever).

2.4.1. How ANT is run from the ArgoUML development
environment

Building from source

For your convenience the ant tool of the correct version is present in the CV S repository of ArgoUML in
thefilear goum /t ool s/ant-1.6.2/1ib/ant.jar.

It is possible to start ant with the command ../toolgant-1.6.2/bin/ant arg and in the modules
.[..[tools/ant-1.6.2/bin/ant ar g . On windows the command ..\tools\ant-1.6.2\bin\ant ar g runs the
program ant . bat .

To keep you from having to write this and keeping track if you are working with a module or not there
are two scripts (one for Unix and one for Windows) that are called bui | d. sh and bui | d. bat re-
spectively present in most of the directories that contain abui | d. xml file. These two scripts run the
equivalence of the above paths.

By setting JAVA_HOME to different values you can at different times build with different versions of
JDK and Java.

To use different versions of ANT, you are responsible for installing your own version. Also, you must
execute /wher e/ever /lyou/placed/your/new/ant t ar get rather than build t ar get .

ArgoUML is currently spread over two projects, the argouml project and the argouml-mdr project. They
depend on each other in that the argouml-mdr project requires log4j and argouml-model.jar from the
argouml project to build and the argouml project needs the argouml-mdr project to run using the default
settings (targets run, info, debug, tests-using-mdr). There are also the java interfaces in the argouml-mdr
project that don't depend on anything from the argouml project.

To get this set up you need to

» build the package target in the argouml project (argouml/src_new)
* build the install target in the argouml-mdr project

This copies all needed libraries to the argouml/build directory.

2.4.1.1. Compiling for Unix
Here is what you need to do in order to compile and run your checked out copy of ArgoUML under
Unix.
1. JAVA_HOME=/ where/you/ have/i nstall ed/jdk
export JAVA_HOME

Thisisfor sh-style shells like sh, ksh, zsh and bash. If you use csh-style shells like csh and tcsh you
will instead have to write setenv JAVA_HOME / wher e/ you/ have/instal | ed/j dk .

2. After checking out with CVS, the shell files (build.sh,...) and executables (ant,...) have the wrong
attributes. The CVS documentation says: "Files also lose their ownerships and permissions during
repository transactions.” Hence, you have to make such files executable before you will be able to
run them.

3. Changethe current directory to the directory you are building
cd / your/ checked/ out/ copy/ of / ar gourm / src_new

4. Start Ant with no parametersto get alist of build targets with descriptions

Jbuild.sh

Building from source

5. Compile, create jar files, and copy them so that argouml-mdr can be compiled using ./build.sh
package.

6. Changetothear gounl - ndr directory using cd ../../argouml|-mdr.

7. Compile, create jar files, and copy them so that they are available in the argouml project using
Jbuild.sh install.

8. Changeback tothear gounl / src_newdirectory using cd ../argouml/src_new.

9. RunArgoUML using ./build.sh run

If you change something, running the run target again will build and run.
If something is changed in the argouml project that affects the argouml-mdr project or if something is
change in the argouml-mdr project you need to go through this again, possibly using the clean target in

either the ar goum / sr ¢c_newrdirectory or the ar gourd - mdr -directory or both directories since we
have not set up dependencies correctly.

2.4.1.2. Compiling for Windows

If you do this from Cygwin you work just like for Unix.

1. set JAVA_HOME=\ wher e\ you\ have\i nst al | ed\j dk

2. Changethe current directory to the directory you are building
cd \ your\ checked\ out\ copy\ of \ ar gourm \ src_new

3. Start Ant with "-p" parameter to get alist of build targets with descriptions
build -p

4. Compile, create jar files, and copy them so that argouml-mdr can be compiled using build
package.

5. Changetothear gounl - mdr directory using cd ..\..\argouml-mdr.

6. Compile, create jar files, and copy them so that they are available in the argouml project using
build install.

7. Changeback tothear gounl \ src_newdirectory using cd ..\argouml\src_new.

8. Run ArgoUML using build run

2.4.1.3. Customizing and configuring your build
Itis possible to customize your compilation of ArgoUML.
If you issue the command build list-property-files you can see what files are searched for properties.
Don't change the ar goumd / src_new def aul t. properti es file (unless you are working with
updating the development environment itself). Instead create one of the other files locally on you ma-

chine. The properties in these files have precedence over the properties in ar goum /
src_new defaul t. properti es.

10

Building from source

Remember that if you do this, you have modified your development environment. To be sure that you
will not break anything for anyone else when checking in things developed using this modified environ-
ment, remove these files temporarily for the compiling and testing you do just before you commit.

2.4.1.4. Building Javadoc

By running ANT again using build prepare-docs the Javadoc documentation is generated and put into
argouni / bui | d/ j avadocs.

2.4.1.5. Building one of the modules

If you want to run ArgoUML with modules enabled the bui | d. xm sare set up to do thisin two ways:

1. Testjust one module

a

Build ArgoUML, the package
Thisis done with ant packageinthear goum / sr ¢c_new-directory.
Run the module

Thisis done with ant run-command inthear gour / nodul es/ what ever -directory.

2. Test several modules together

a

Build ArgoUML, the package
Thisis done with ant packageinthear goum / sr c_new-directory.
Compile and install the modules

This is done with ant install-command in each of the ar goum / nodul es/ what ever -
directories.

Start ArgoUML

Thisisdonewith ant run inthear gounl / sr ¢c_new-directory.

Thiswill start ArgoUML with all modules available.

2.4.2. Developing in a subproject

This describes how to do development in one of the ArgoUML sub-projects.

If you areinahurry:

C.\Wor k>nkdi r argoum \ build

Download and unpack the latest release of ArgoUML into this directory.

Wor k>set CVSROOT=: pserver:guest @vs.tigris.org:/cvs
Wor k>cvs 1 ogin (use guest as password)

Wor k>set JAVA HOVE=C: \ Pr ogr ans\ j dkwhat ever

C\
C\
C.\ Work>cvs checkout argoum - XX
C\
C\

Wor k>cd ar gounml - XX

11

Building from source

C.\Wor k\ ar goumn - XX>ant run
An ArgoUML starts with the module from the subproject argouml-XX enabled.

That was the short version provided that, you are using Windows + JDK, you have ant installed, and the
subproject in question does not require any of the ArgoUML tools to build.

If you don't understand this or it doesn't work read the rest of the chapter that describes why and how in
more detail.

2.4.2.1. The sub-project's relation to ArgoUML

The purpose of a subproject to ArgoUML is to develop things that are run within ArgoUML. In
ArgoUML we call them modules, in other tools they are called add-ins or plug-ins.

If you want to start working with a module of your own you could do it by letting the ArgoUML project
leader set up a subproject to ArgoUML for you. The benefits are:

* You will inherit al the infrastructure from the ArgoUML project.

Thisincludes a site for your CV Srepository, mailing lists, web server..., acommon way to set up the
project, releases, bug fixes, Xenofarm builds, static checks, and coding guidelines and license.

* You get acommunity of ArgpUML developers that might monitor your work.

The draw-backs are:

* You areforced to use the ArgoUML infrastructure
CVS, BSD license, coding guidelines.

* You areforced to make your module Open Source.

If you decide not to make your module a argouml subproject, you can still benefit from using a similar
set up as described here but since you have your module repository elsewhere, some adaptations are ne-
cessary.

The sub-projects are developed close to the ArgoUML project and reside in the same CV'S repository.
We try to provide a working set of tools and instructions to fit the whole set of projects. These tools are
sometimes located in the argouml project and sometimes in the subproject. Also, to compile the module,
you need the argouml interfaces, and to run it you need argouml in place. In most cases the argouml in-
terfacesis argouml itself so this distinction is mostly formal.

There are two ways to get the argouml in place w.r.t. your module. The ArgoUML source way and the
quicker ArgoUML distribution way.

Using the ArgoUML source way you check out the argouml project alongside the subproject you are go-
ing to work with and build it. If you are doing development in the argouml project too, if the subproject
in question requires a tool from the argouml project, or if your modules is on the bleeding edge of
argouml development and you can't wait for distributions, thisis the preferred way. Y ou will need to up-
date and rebuild the argouml project regularly.

Using the ArgoUML distribution way, you check out only your module and then download the
ArgoUML distribution and work against that. This is the approach described in the beginning of this
section. You will need to download and replace the ArgoUML distribution whenever you need a newer
version to work against. You could also, at any point, upgrade to the ArgoUML source way to get to the
bleeding edge.

12

Building from source

The build.xml ant configuration file in the subproject and the argouml main project are set up to allow
for both of these ways.

2.4.2.2. Working in a subproject

Each subproject hasits own web site with documentation and plans of the subproject.

The subproject has its own CV S mailing list that you need to join to monitor the commits. It also hasits
own dev mailing list where the people working within that subproject discusses the subproject. Join both
of these mailing list to see what is going on in the subproject!

The sub-projects don't use their own Issuezilla database but instead they are subcomponents in the
ArgoUML lIssuezilla. Because of this you need to acquire an Observer role in the argouml project to
work in a subproject.

2.4.2.3. Targets in build.xml in a subproject

2.4.3.

The following targets have the same documented meaning in all sub-projects:

* clean - optional

Removes files that are generated by running any of the other targets.
» compile - optional

Compilesthe code. Theresult isinbui | d/ cl asses.
* generate - optional

Thisisastep that, if it exists, can be run before compile. The result of thisis some files that is a pre-
reguisite for compile so the compile target runs this automatically.

e ingtall
This builds the whole module and copiesit into the ext directory in the argouml installation.

The purpose of the ext directory is so that argouml can be started with several different modules star-
ted at once.

* jar-optiona

This builds the whole module and puts the resulting jar file(s) in bui | d.
e run

This starts argouml with this module active.

Thisisthe way to start this module with the newly compiled source.
e tests- optional

This runs all the JUnit test cases available in the module. This probably requiresthe j uni t . j ar
tool from the argouml project.

Troubleshooting the development build

13

Building from source

2.4.3.1. Compiling failed. Any suggestions?

It might be that some other developer has made a mistake in checking in things that contain errors, or
forgotten to check in some files in a change. Look at the last couple of hours on the devel opers mailing
list [http://argouml.tigris.org/serviets/BrowseList?istName=dev]! It is probably on fire.

Another reason for problemsis an unclean local source tree. This means that if you have updated differ-
ent parts of your source tree at different times it might contain inconsistencies. If you suspect this, first
try to fix it by doing build clean and cvs update -d before trying to build again. If that doesn't work re-
move your checked out copy completely and get it al again through CVS.

Another reason might be that you have an bui |l d. properties or
argoun . bui | d. properti es file that you have been working with earlier and that is doing
something. If in doubt, remove those files.

If nothing helps, ask the developers mailing list [mailto:dev@argouml.tigris.org]!

2.4.3.2. Can't commit my changes?

You need to have a developer role in the ArgoUML project. If you don't then you cannot do commit
yourself. Discuss what you have done and how best to test it on the developers mailing list
[mailto:dev@argouml.tigris.org]! Eventually someone will commit it for you.

Furthermore the checkout of your copy needs to be done with your Tigrisid that has the Developer role.
If you for some reason have earlier checked out a copy as guest and then made modifications, changed
the CVSROOT variable you still cannot commit changes done in the repository since the checked out
copy contains information on who checked out. For this reason, it is best to apply for an Observer rolein
the project if you are going to work with the source at all. The Observer role is probably granted within
a couple of days (we welcome everybody!) and then you can check out with your Tigris id. This means
that when you eventually are granted a Developer role you can continue working with the same checked
out copy.

2.5. The JUnit test cases

2.5.1.

ArgoUML has a set of automatic test cases using JUnit-framework for testing the insides of the code.
The purpose of these are to help in pin-pointing problems with code changes before even starting
ArgoUML.

The JUnit test cases are residing in a separate directory and run from ant targets in the
src_new bui | d. xm . They are never distributed with ArgoUML but merely atool for developers.

By running the command build tests guitestsin sr c_newthese test cases are started, each in their own
VM.

Each test case writesitsresult on the Ant log.

The result is aso generated into a set of files that can be found a buil d/
test/reports/junit/output/htm/index.htm.

Thetest cases' Java source code is located under ar goum / t est s/ or g/ ar gount .

How to write a test case

Now thiswill make all you Java enthusiasts go nuts! We have both class names and method names with
aspecia syntax.

14

http://argouml.tigris.org/servlets/BrowseList?listName=dev
http://argouml.tigris.org/servlets/BrowseList?listName=dev
mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org

Building from source

2.5.1.1. About the Test case Class

The name of the test case class starts with "Test" (i.e. Capital T, then small e, sand t) or "GUITest" (i.e.
Capital G, U, I, T then smal e s, t). The reason for this is that the specia targets in
src_new bui | d. xm search for test case classes with these names. If you write atest case class that
does not comply to this rule, you still can run the test cases in this class manually by starting with build
run-with-test-panel, but it wont be known and run by other developers and automatic build mechan-
isms so don't doit.

Test case classes that don't require GUI components in place have filenames like Test *. j ava. They
must be able to run on a headless system. To make sure that this works, aways run your newly de-
veloped test cases with build tests using JDK 1.4 or later.

Test case classes that do require GUI components in place have filenames like GUl Test *. j ava.

We should try to get as many tests from a GUITest* class to the corresponding Test* class because the
latter are run by automatic builds regularly.

Every class org. argoum . x.y. z stored in the file src_new or g/ argoum / x/y/z.java
should have a JUnit test case class called or g. ar gouml . x. y. Test z stored in the filet est s/
org/ argouni / x/ y/ Test z. j ava containing all the Unit Test Cases for that class that don't need
the GUI components to run. Tests that do need GUI components to run should be part of a class named
org.argoum . x.y. GUl Testz stored in the file
tests/org/argoum / x/y/ GJl Testz.java

If you only want to run your newly written test cases and not al the test cases, you could start with the
command build run-with-test-panel and give the class name of your test case like
org.argoum . x.y. Testz ororg.argounl.x.y. GQJl Testz . You will then get the output
in the window. You could run al tests in this way by specifying the special test suite
org.argoum . util.DoAl | Test s inthe sameway.

Every test case class imports the JUnit framework:
import junit.framework.*;

and it inherits Test Case (i.e.j uni t . f r anewor k. Test Case).

2.5.1.2. About the Test case Method

Methods that are tests must have names that start with "test" (i.e. all smal t, g, s, t). Thisis a require-
ment of the JUnit framework.

Try to keep the test cases as short as possible. There is no need in cluttering them up just to beautify the
output. Prefer

/1 Exanple fromJUnit FAQ
public void testlndexQut O BoundsExcepti onNot Rai sed()
t hrows | ndexQut Of BoundsException {
ArraylLi st enptyList = new ArrayList();
hject o = enptylList.get(0);

over

public void testlndexQut Of BoundsExcepti onNot Rai sed() {

try {
ArrayLi st enptyList = new ArrayList();

15

Building from source

nject o = enptylist.get(0);
} catch (I ndexQut OF BoundsException iobe) ({

fail ("I ndex out of bounds exception was thrown.");
}

}

because the code is shorter, easier to maintain and you get a better error message from the JUnit frame-
work.

A lot of times it is useful just to run the compiler to verify that the signatures are correct on the inter-
faces. Therefor Linus has thought it is a good idea to add methods called conpi | eTest St ati cs,
conpi | eTest Const ruct ors, and conpi | eTest Met hods that was thought to include correct
cals to al static methods, al public constructors, and all other public methods that are not otherwise
tested. These methods are never called. They serve as a guarantee that the public interface of a class will
never lose any of the functionality provided by its signature in an uncontrolled way in just the same way
as the test-methods serve as a guarantee that no features will ever be lost.

Example 2.1. An example without Javadoc comments

package org.argoum .um . ui;
i mport junit.framework. *;

public class GUJ Test UMLActi on extends Test Case {
public QU Test UMLAction(String name) {
super (nane) ;

/1 Testing all three constructors.

public void testCreatel() {
UMLAction to = new UMLActi on(new String("hexagon"));
assert ("D sabl ed", to.shoul dBeEnabl ed())

}

public void testCreate2() {
UMLAction to = new UMLActi on(new String
assert ("D sabl ed", to.shoul dBeEnabl ed()

hexagon"), true);

~——~

}

public void testCreate3() {
UMLAction to = new UM_LActi on(new String("hexagon"), true, UM.Action. NO | CC
assert (" Di sabl ed", to.shoul dBeEnabl ed());

}

and the corresponding no-GUI-class:

package org.argoum .um . ui;
i mport junit.framework. *;

public class Test UMLActi on extends Test Case {
public Test UMLAction(String name) ({
super (name) ;

/1 Functions never actually called. Provided in order to make
/1 sure that the static interface has not changed.
private void conpileTestStatics() {

bool ean t1 = UMLActi on. HAS | CON;

bool ean t2 = UM_.Acti on. NO_| CON;

16

Building from source

UMLAct i on. get Shortcut (new String());
UMLAct i on. get Mhenoni c(new String());
}

private void conpil eTest Constructors() {
new UMLAction(new String());
new UMLAction(new String(), true);
new UMLAction(new String(), true, true);

private void conpil eTest Met hods()
UMLAction to = new UM_LAction(new String());
t o. mar kNeedsSave() ;
t 0. updat eEnabl ed(new Obj ect ());
t 0. updat eEnabl ed() ;
t 0. shoul dBeEnabl ed() ;

2.6. Manual Test Cases

2.6.1.

2.6.2.

The manual test cases are here to help us test ArgoUML in order to cover things that are not testable
with the JUnit test cases. Since it is alittle bit more cumbersome to run them, a tester must read the test
cases, understand what he is supposed to do, do it, and document the result, we try to go as far as pos-
sible with the JUnit test cases and have as few manual test cases as possible. |.e. If one of these tests can
be converted into a JUnit test case we shall try to do so because it can save us alot of time. On the other
hand, there are several things that cannot possibly be tested with JUnit tests, so there probably are a lot
of Manual Test Cases to be written.

Running the manual tests

Anyone can run the manual tests on any version of ArgoUML. If it doesn't work, i.e. the expected result
is not seen, then thisis adefect in that version of ArgoUML and should be reported using Issuezilla.

At every release, the ambition is to run through all manual tests. Initially, when the amount of manual
testsis small, thisis done by the release responsible while testing the newly compiled release. Later on,
when the amount of manual tests makes it unpractical to this during the release work, the work can be
done by anyone, or any group of people within the project, after a development release is made and be-
fore a stable release is made. A signed statement with list of run tests including version number, a list
(hopefully empty) of failed tests together with their Issuezilla DEFECT number, the host type, OS, JDK
version, ArgoUML version, ... shall be mailed to the dev list when these tests are compl eted.

Writing the manual tests

Adding a new manua test to the group of already existing manual tests or improving one of the existing
tests helps the project forward. Remember that the first priority is to test things with the JUnit tests be-
cause they can be, to some extent, run automatically and have their result reported automatically but
then manual tests are the next big improvement.

Every test has severa attributes to make sure that we can identify the test and help the developers and
testers.

e A name

This nameis the title of the subsection where the test is described.

17

Building from source

e A number

These start with TEST1 and are allocated in sequence and maintained manually in this document
(TEST2, TEST3, TEST4, ...). They are never reused when made available by removing atest case.

e Arevison

Every test case has arevision. These start with REVa and are increased with one every time the test
case is changed.

* Alist of requirements tested
Thislist isreferencesto the requirements as stated in Chapter 3, ArgoUML requirements.
» Preparationsi.e. what to do before the test
Thisis Optional. The default isthat you have just started ArgoUML.
* A description on what to do an what to expect
Thisisadescription in plain English telling the tester exactly what to do and what to expect. If this
description doesn't work or is ambiguous in any way the tester should consider the test to be DE-
FECT and report it in Issuezilla.
Thisis probably best written like this:
Do: whatever
Expected output: whatever

Do: whatever

Expected output: whatever

2.6.3. The list of tests

This section contains all the tests each in a subsection of its own.

2.6.3.1. Modules are enabled

TEST1 REVa (Does not test any current requirements.)
Preparations: Download and install ArgoUML together with the modules.
Do: Start in awindow that allows you to see the output on Stdout.

Expected output:

Loaded Mbdul e: Java from cl asses
Loaded Mbdul e: Gener at or Cpp
Loaded Modul e: Cener at or CShar p
Loaded Mbddul e: GCener at or PHP

Do: Press F7 (or select menu Generation => Generate All Classes...)

Expected output: A window pops up with Class Name, Java, Cpp, CSharp, and PHP.

18

Building from source

Do: Select menu File => Import sources, then open the drop-down box Select language for import: to
the far right.

Expected output: The drop-down box contains Java and Java from classes.

2.6.3.2. Class diagram

TEST2 REVa (Requirements tested: Section 3.2.1, “ ArgoUML shall be a correct implementation of the
UML 1.4 model. ” and Section 3.2.2, “ ArgoUML shall implement everything in the UML 1.4 model.)

Do: Select the Class Diagram. Click the Package symbol on the Edit pane tool-bar. Click on the dia-
gram. Click the Class symbol on the Edit pane tool-bar. Click on the diagram. Click the Interface sym-
bol on the Edit pane tool-bar. Click on the diagram.

Expected output: The Class diagram and the explorer now contains one package, one class, and one in-
terface.

Do: Select the class. Drag from the four quick-buttons located along the sides of the class and release
somewhere on the diagram. Click on the fifth quick-button (bottom-left of the class). Select the inter-
face. Drag from the quick-button located along the bottom of the interface symbol and release some-
where on the diagram.

Expected output: When releases on the diagram a new class is created both on the diagram, where re-
leased and in the explorer. The type of the association corresponds with the quick-button type. The asso-
ciation created when clicking the fifth quick-button goes back to the class itself.

2.7. Generating documentation

2.7.1.

This describes how the documentation is generated i.e. both what to do and how the setup works.

If you areinahurry:

C. \Work>set CVSROOT=: pserver:guest @vs.tigris.org:/cvs

C:\Work>cvs | ogin (use guest as password)

C:\Work>cvs checkout argoum /docunentati on argoum /tools argoum/lib
C.\ Work>set JAVA HOVE=C:\ Pr ogr ans\ j dkwhat ever

C:\Work>cd argoumni \ docunent ati on

C.\ Wor k\ ar gourd \ docunent ati on>bui | d defaul thtm

The HTML version of the Cookbook, Quick Guide, and User Manual are built and the result end up in.
C:\ Wor k\ ar goumd \ bui | d\ docunent at i on\ def aul t ht m \ cookbook,

C:\ Wor k\ ar gourd \ bui | d\ docunent at i on\ def aul t ht m \ qui ck- gui de, and
C:\Wor k\ ar goum \ bui | d\ docunent at i on\ def aul t ht m \ manual respectively.

Note
¥

From here on it isthe old text that is more or less "Publishing ArgoUML" to be reworked.

How the ArgoUML web site works

Tigris provides the ArgoUML site to be edited through CVS. Everything that is checked in under
ar gouni / www becomes immediately available at the URL http://argouml.tigris.org/ with some added
decorations.

Example: The file argoun / www/ proj ect. htm is available a ht-

19

http://argouml.tigris.org/

2.7.2.

Building from source

tp://argouml .tigris.org/project.html.

Thisisthe way the site is maintained and updated.

The ArgoUML documentation

For the ArgoUML project the same documentation shall be available in both HTML, PDF and JavaHelp.
To this end the documentation is written in DocBook XML and generated into two versions of HTML
(one page per chapter and one page for the whole book), PDF and JavaHelp.

We have tools that does the conversion from DocBook XML to HTML and PDF. The conversion is
done whenever you need to look at the result or when you want to present the final result on the web
site.

There are currently three different books generated in this way, each into its own directory. They are
cookbook (this document), manual and quick-guide. They are all generated and stored in the exact same
way except for the name of the directory that is one of cookbook, manual or qui ck- gui de. Below
I will reference these directories using book .

When a new version of the documentation is to be made available on the web site the responsible docu-

ment release person does the following:

1. Hechecksout everything needed and a copy of the ar goun / www.
If wanted, the CV S repository could be tagged and then the tag can be checked out. This makes it
possible to know exactly how a certain version of the documentation was generated.
The documentation is generated using build docs.
This generates al three books and the result appears in argoum/
bui | d/ docunent ati on/ def aul t ht m / book , argoun /
bui | d/ docurent ati on/ pri nt abl eht m / book , and argoum /
bui | d/ docunment at i on/ pdf / book .
This has been done several times before while preparing the release so no problems are expected. If
there are problems then the preparations were not good enough and the process is best stopped right
here.

3. All the old files ae removed from the checked out copy of argoum/
www/ docunent ati on/ def aul t ht m / book , argoun /
www/ docunent ati on/ pri nt abl eht m / book .

4. New files are copied into the checked out copy of www on top of the previous files there replacing
them.

All the files are copied from ar gound / bui | d/ docunent at i on/ def aul t ht m / book to
ar gourm / ww documnent at i on/ def aul t ht M / book . The same for pri nt abl eht m
and pdf .

5. Nolonger used filesin ar goun / ww/ docunent at i on are removed from CVS and new files
are added.

cvs-n update
Watch for "Missing" and "Unknown" files.

The missing files are scheduled to be removed by: cvs remove each of the m ssing

20

http://argouml.tigris.org/project.html

Building from source

files
The "Unknown" files are scheduled to be added by: cvsadd each of the added files

This removing of missing files and adding of unknown files may seem backward but it is from the
perspective of CV'S. The missing files are the ones that were present in the previous version of the
documentation and do not have a replacement, either because that chapter does not exist anymore
or that the tool generates filenames differently. The Unknown files are files with filenames that for
the same reason appear from one version of the documentation to the next.

6. Commit the changes thus publishing it on the web site.
cvs commit -m'New version of the documentation published'

7. The PDF book is uploaded to the download page.

2.7.3. How we work with documentation

The developers or authors that work with the documentation or with the tools to generate the document-
ation (or anyone else interested in how it works) can generate the documentation like described above
and examine theresult inar gound / bui | d. Itisonly thelast part about checking in and uploading the
result under ar gounm / www/ docunent at i on that requires write access in the CVS and some con-
figuration management since it more or lessis releasing the manual.

In order to do this you need to check out the whole of thear goum / docunent at i on directory. You
also need the directory ar goum /| i b and ar gound / t ool s that contain the tools used: Ant, FOP,
Saxon, ...

The subdirectories of ar gound / docunent at i on, cookbook, manual , and qui ck- gui de each
contain one of the three books. The subdirectory docbook- set up contains two things. It contains the
configuration files that control how the generation is done. It contains the XSL rules for all the genera-
tion. The subdirectory i nages contains al the required pictures for all the books.

When, in the docunent at i on you run ./build.sh defaulthtml or one of the other targets that builds
the documentation, all books are built. What happensis (the target internal -dispatcher):

 The manual / argomanual . xm is copied by ant to nanual / ar gomanual - gener -
at ed. xm while doing substitution of tokens: (@VERSION@ to become the version as specified
indef aul t. properties)

» The file manual / ar gomanual - gener at ed. xm is processed by the specia docbook-
setup/ create-inglist.xsl xd script that generates alist of included images.

e All included images are copied.

The purpose of thisisto only get the images actually used copied with the document that uses them
and not all images.

 TheHTML isgenerated by processing the file manual / ar gomanual - gener at ed. xmi

The file manual / ar gomanual - gener at ed. xml is a temporary file that only exists while pro-
cessing the XML. If editing the XML with a DocBook editors you open the file manual / ar gomanu-
al . xm and edit the unsubstituted file. The differences between the unsubstituted file and the substi-
tuted file are so small that it shouldn't make any difference.

21

Building from source

2.8. Making a release

The purpose of this chapter is to simplify for the person that is actually doing the release work and to
make sure that everything is done in the exact same way every time and nothing is forgotten.

The scripts involved have been developed and are mostly run on a Cygwin system. They will hopefully
work on any UNIX system but most likely they will need some adjustments.

- Note

Thisis under rework now that the distribution is to be done using a SV N project.

The artifacts in play here ae argoum/src_new build.xm, argoumn/
t ool s/ bi n/ bui |l d-rel ease. sh, argoum /tool s/ bi n/ pack-rel ease. sh, and other
bui | d. xm files. The plan for the future is that the bui | d. xm files contain rules on how to compile
and package things into jar files. After that the ar goum / t ool s/ bi n/ bui | d-r el ease. sh and
ar goun / t ool s/ bi n/ pack-r el ease. sh will be taken care of signing, packing into tar, zipped
archives, packing sources, and uploading. The bui | d. xm will have rules that places the complete
runnablereleasein ar goumnd / bui | d. These are the same rules used by developers when compiling for
testing. Thebui | d-r el ease. sh and pack-r el ease. sh script takes it from there.

Prerequisites (what you need to be able to do this):

e CVSaccessto the argouml project (to set tags).

Y ou aso need CVS access to the included sub-projects to set the tags there: (argouml-mdr, argouml-
csharp, argouml-nb, ... and thislist will probably grow).

» SVN accessto the argouml-downloads project (to upload the result).

* A machine.
Thisis probably the machine you use for your development if you are an argouml devel oper.
The machine needs Internet access (it is not a small download and upload so at least 128K B Internet
connection to keep the time reasonable < 2 hours), the correct version of Java installed (should be a
JDK 1.4.2), CVSand SVN installed, Unix or Cygwin to be able to run the scripts.

» That you have set the CVSROQT correctly.

Make sureitissetto :pserver:user @cvstigris.org:/cvs.

Here are the steps to be done when one actually does arelease:

1. Setthear go. core. versi on tonot include the "PRE-" part.

Thisis donein the def aul t . properti es-filein src_newand docunent at i on and then,
commit the files.

2. Tagthe CVSrepository with the freeze tag!

Normally this tag is "VERSION_X_Y_Z F', eg. VERSION_0 9 7 F. The according command
line CVScommandiscvsrtag VERSION X Y Z Fargouml.

22

Building from source

Note

Because of a problem on the Tigris site, this doesn't work. The workaround is that you
make sure you have a complete checked out and copy of ArgoUML, go to the root
directory ar gount , and run the command cvstag VERSION_X Y Z F.

Y ou also need to set the tag in the sub-projects so the following command is more like it:

for proj in argoum argoum -ndr argoum -csharp argoum - nb argoun -i 18n-zh
do

(cd $proj & & cvs tag VERSION X Y Z F)
done

Open the repository for commits toward the next version.

This is done by setting the ar go. core. versi on indefaul t. properties insrc_new
and documnent at i on to PRE-Nunber of next rel ease, committing and telling everyone
on the developers mailing list.

Check the key to sign the jar files for Java Web Start.

Run the command keytool -list -v and give the keystore password secr et . Y ou should have a key
named argouml that is valid several months in the future.

Thisisto make sure that you have a valid key for the purpose of signing the Java Web Start version
of thefiles.

Since the ArgoUML project and the Tigris organization are |oose organizations we cannot buy a
"rea" key. The keys we use are the unsigned keys that can be generated by anyone using the
keytool provided with Java.

A key is generated with the command keytool -genkey -alias argouml -stor epass secret.

By default these keys have a validity of just three (3) months but by giving the -val i dity
days thevalidity can be extended.

Run the script ar goum / t ool s/ bi n/ bui | d-r el ease. sh and give the answers to the ques-
tions.

- Note

Y ou need to have this file checked out.
Actually the script assumes the following set up:

e sonedirectory/ -thedirectory wherethe script is started from.

e sonedirectory/argoum - the place where a checked out copy of
ArgoUML resides and the documentation can be built.

The script is located here and the Ji mi Pr oCl asses. zi p istaken from thisin-
stallation so if you can build the PDF documentation correctly in this, a lot is
gained.

23

Building from source

« sonedi rectory/ FREEZETAG - the created that will be created where the
whole build will take place

e svn/argoumn - downl oads/ t r unk/ ww/ - where the files to be uploaded
will go

Notice that this is starts one step up, on the same level as sonedi rectory. It
will be accessed using a path like
../ svn/ argoumn - downl oads/ t r unk/ www.

Thisis achieved using the following commands:

cd ..
svn co -N http://argoum -downl oads. tigris.org/svn/argoum - downl oads

Thiswill:

a

Check out the source in a new directory. The new directory is named after the freeze tag that
you have set.

Make the ant executable.
Build the core ArgoUML.

This is done in the ar gourd / sr c_new directory of the newly created copy by using the
package ant target!

Build the sub-projects and modules to be included in the release.
Download docboox-x4dl.

Thisis normally done using the docbook-xsl-get ant target.
Copy thefileJi m Pr oCl asses. zi p.

This is done automatically from the working copy you have alongside. If not, you will be
asked to copy thisin manually.

Jimi is downloaded separately. See Jimi.

Build the PDF documentation.

Run through the automatic tests!

Thisis done by issuing the command build alltestsinthear gound / sr c_newdirectory.

There should not be any failed tests. (See details on where to find the result in Section 2.5,
“The JUnit test cases’).

If the tests did not pass See Section 2.8.1, “The release did not work”.

Sign dl jar files.

Test the release manually!

The purpose of thisis to make sure that there isn't any problem introduced by the rel ease procedure

24

Building from source

10.

and that the jar files contains the correct list of jars.

Start using the command

cd VERSION X Y _Z F/argoum /build

java -jar argouni.jar

cd ../../..

and do some ad-hoc testing.

Set the rel ease tag.

The following command will do it for you:

cd VERSION X Y Z F

for proj in *

do
(cd $proj && cvs tag VERSION X Y Z)

done

cd ..

Run the script ar goun / t ool s/ bi n/ pack-rel ease. sh

Thiswill:

a Create the files Ar goUML- VERSI ON- | i bs. tar. gz, Ar goUML- VERSI ON- 1 i bs. zi p,
Ar goUML- VERSI ON- nodul es. t ar. gz, Ar goUML- VERSI ON- nodul es. zi p,
Ar goUML- VERSI ON- src. tar. gz, Ar goUM.- VERSI ON- sr c. zi p, Ar goUML- VER-
SI ON- app. t gz, ArgoUM_- VERSI ON. t ar . gz, ArgoUM_- VERSI ON. zi p, and i n-

dex. ht m . There should also be a subdirectory ar gound / ar gouni - VERSI ON/ | ws
with .jar and .jnlp files.

b. Copy thefilesin placein the svn directory.

A tree with al files is located in argouml -version . It is copied to svn/
ar goumnt - downl oads/ t r unk/ www' .

Commit the release in the SVN download project.

The commands you would do for thisare

cd ../svn/argoun - downl oads/ t r unk/ wwv
svn add ar gouml - VERSI ON
svn comit -nm Upl oad the rel ease VERSI ON

Go through Issuezilla and check things.
Thingsto check are:
a. ThatthereisaVersion created in Issuezillafor the newly created release.
The purpose of thisisto make it possible for everyone to report bugs on the new release.

b. Make sure that the upcoming releases have target milestones created for them. This needs to
be done for all components that has the same release scheme. Also see that the numbering is

25

Building from source

the same in all components and that it is in the correct chronological order except for the not
yet done releases that come before the already completed.

¢c. Changethe target milestones of all the not yet resolved issues for thisrelease to ---.

d. Change the target milestones of any fixed issue in component argouml with target milestone -
-- to that of the current release.

This is probably some developer that has fixed an issue but forgotten to set the target mile-
stone correctly.

e. Moveall issues reported on ‘current' to this rel ease (for the component argouml).

These items were reported between the previous version and this version. Since "current’ will
be reused for the next release, they need to be locked to the closest release to where they were
found.

f. Reopen RESOLVED/REMIND

This can also be a good time to change all RESOLVED/REMIND. Search for them and Re-
open them.

g. Check RESOLVED/LATER

It could also be good to check that all RESOLVED/LATER has avalid target milestone (must
be an upcoming milestone). Search for them and Reopen the ones that haven't. Also, if the
milestone denotes or is going to be resolved in the upcoming release, Reopen them with a
comment that they are now active.

11. Notify personsresponsible for installers

This is done by sending a mail on the installers mailing list
[mailto:dev@argoumlinstallers.tigris.org].

12. Make announcements!

Add the index file to the directory ar goum / www downl oad so that it will show up at the URL
http://argouml .tigris.org/download/rel ease012345.html
[http://argouml.tigris.org/downl oad/rel easeX X X .html].

Add new file to the File Sharing area under the correct release. Since a release is made, the Status
of thefilesis"Baselined". Use the URL added in the previous paragraph as Link.

Write a News announcement in the argouml project. The announcement shall include a statement
on what kind of release this is, information on what major things that have changed (for stable re-
leases thisis alist of what has changed since the last stable release). It could aso include the list of
resolved issues, alist of serious known problems with this release (stable releases shouldn't have
any), technical details on how the release was built, and the plan for the following release.

Write a short note on the users list (for development releases), and announce lists (for stable re-
leases or major breakthroughs). Include the link to the new item.

Freshmeat: currently Thierry Lach does the Freshmeat announcements which require alogin so just
inform him.

2.8.1. The release did not work

26

mailto:dev@argoumlinstallers.tigris.org
http://argouml.tigris.org/download/releaseXXX.html

Building from source

This shouldn't happen! Thisreally shouldn't happen!

The reason that this has happened is that one of the developers has made a mistake. Y ou now must de-
cide away forward.

2.8.1.1. Fix the problem yourself.

If the problem is obvious to you and you can fix it quickly, do so. Thisis done by doing the following:

» Makethereleasetaginto abranch
cvsrtag-b -r VERSION_X_Y_Z FBRANCH X Y Z
» Update your checked out copy to be on that branch
cvsupdate-r BRANCH X Y Z
» Fix the problem in your checked out copy
» Commit the problem in the branch
cvs commit -m'Fix of problem blabla’
» Continue the build process

This is done by restarting the build dist-release-command and from that point on working in the
branch instead of at the tag.

» Explain to the culprit what mistakes he has made and how to fix it.

It is now his responsibility to make sure that the problem will not appear in the next version. He can
do this either by merging in your fix or by fixing the problem in some other way.

At this point an in-detail description of how poor programming skills the culprit has and how ugly
his mother is, is probably in place but please keep it constructive! Remember, you might be mistaken
when you guess who the responsibleis.

2.8.1.2. Delay the release waiting for someone to fix the problem.

Create the branch as described in Section 2.8.1.1, “Fix the problem yourself.”. Then tell the culprit and
everyone on the developer list what the problem is and that it isto be fixed in the release branch a.s.a.p.

Monitor the changes made to the branch to verify that no one commits anything else but the solutions to
the problems.

When you get notified that it is completed, update your checked out copy and continue the release work.

27

Chapter 3. ArgoUML requirements

Linus Tolke

This chapter contains a description on how ArgoUML should work and behave for the users.

These things might not be implemented yet and the solutions might not even be clear but it is a defini-
tion of the goal.

Thefact that it is not implemented or doesn't work as stated here should be registered as a bug in the bug
registering tool.

Every requirement has a number (REQ1, REQ2, REQS3, ...) that never changes, arevision (REVa, RE-
Vb, REVCc, ...) that changes when the requirement change, a text that is the requirement text to imple-
ment, a rationale that is the description on why this is important, a stakeholder that is one of the stake-
holdersin the vision for who this isimportant.

3.1. Requirements for Look and feel

3.1.1.

This describes how the ArgoUML look and feel shall behave.

When multiple visual components are showing

the same model element they shall be updated in a con-
sistent manner throughout the application.

3.1.2.

REQ1 REVa

Rationale: There is no way of telling where the user is looking while working with ArgoUML. For this
reason he might be terribly confused if some other view that happens to show the same element is not
showing the same thing.

Sakeholder: User of ArgoUML

All views of a model element shall be update as

soon as the model element is updated.

3.1.3.

REQ2 REVb

Rationale: If auser makes an update of a part of the model, an immediate feedback in all other parts that
are currently showing might help him to get it right.

Sakeholder: User of ArgoUML

Editable views of the model should update the

model on each keystroke and mouse click.

REQ11 REVa

Rationale: If a user makes an update of a part of the model, an immediate feedback in all other parts that
are currently showing might help him to get it right.

28

ArgoUML requirements

Sakeholder: User of ArgopUML

3.1.4. Any text fields that require validation should not
be editable directly from a view.

REQ12 REVa

Rationale: If atext field requires validation there exists, by definition, a possibility that the text field is
in an invalid state at any time during editing. Therefore the model cannot be updated until the field is
completed in avalid state or rejected.

Sakeholder: User of ArgoUML. TODO: Isthisthe correct stakeholder?

3.1.5. With dialogs, the model is not updated until the
dialog is accepted by the user with valid fields.

REQ13 REVa

Rationale: It is a common feature of GUIs that a dialog displays a snapshot of its model at the time of
creation and only updates that model on the user acceptance of the entire dialog. Thisis afamiliar look
and feel for users.

Stakeholder: User of ArgoUML.

3.1.6. The user shall receive some visual feedback dur-
ing the edit process of textual UML to indicate whether
the text represents valid UML syntax.

REQ14 REVa

Rationale: Writing a correct syntax of anything is complicated. Good compilers are helpful in pinpoint-
ing where the problem is (what line and what token isin error). The text fieldsin ArgoUML are not de-
veloped in the same way as source code and we have no compiler step to verify it all. Instead this valida-
tion needs to be done while editing meaning that the user needs all the help he can get to as quickly as
possible, get the syntax right. TODO: Is this the correct motivation for this?

Sakeholder: User of ArgoUML.

3.1.7. There shall be no indication of an exception on
the screen or in the log if it has occured merely because

of a user mistyping or not being aware of UML syntax.
REQ3 REVa
Rationale: An exception in the log or on the screen is always the sign of a serious error in the applica-
tion that should be reported as a DEFECT. If a mistyping generates such a problem the user might loose
interest in ArgoUML as atool because he percievesit as not working correctly.

Sakeholder: User of ArgopUML

29

ArgoUML requirements

3.1.8. All text fields shall have context sensitive help.

Asfollows:

1. A tooltip that explains the data and format expected by the particular field.
This can be omitted when there is a header stating the data of the field and the format is obvious.

2. Pressing F1 or choosing help from the menu shall display a popup window explaining for data and
format required by the current input field. Input focus shall be left on the field during any user in-
teraction with the popup (dragging, scrolling or closing).

REQ4 REVa

Rationale: Throughout a complex application like ArgoUML there are lots of text fields. Unlessthereis
a possihility to always get this kind of help the user might not be able to make out what he is actually
supposed to do in that field.

Sakeholder: User of ArgoUML

3.2. Requirements for UML

3.2.1. ArgoUML shall be a correct implementation of the
UML 1.4 model.

REQ5 REVa

Rationale: The vision of ArgoUML isto provide atool that helps people work with an UML model. The
UML model might later on be used in some other tool. If the implementation is not correct then
ArgoUML will not be compatible with that other tool or the user will be confused. There might be a lot

of tough decisionswhen it comesto if it is ArgpUML or some other tool that deviates from the UML 1.4
but there shall never be any doubt that the intention of ArgoUML isto implement UML correctly.

Sakeholder: User of ArgopUML

3.2.2. ArgoUML shall implement everything in the UML
1.4 model.
REQ6 REVa

Rationale: The ambition is to implement all of UML. This means that no matter how you use UML
ArgoUML will always be aworking tool.

Sakeholder: User of ArgopUML

3.3. Requirements on java and jvm

3.3.1. Choice of JRE: ArgoUML will support any JRE
compatible with a Sun specification of any JRE from Sun
that has not begun the Sun End of Life (EOL) process.

30

3.3.2.

3.3.3.

ArgoUML requirements

REQ7 REVb

Rationale: The JREs and the adjoining libraries (especially swing) are aways improving to include new
features and new ideas. The developers of ArgoUML would like to use these new features.

Note: J2SE 1.3.1 begun its Sun End of Life (EOL) process on October 25, 2004.
Sakeholder: Developers of ArgoUML

Download and start
It shall be possibleto install ArgoUML locally on the machine and use without Internet connection.
REQ8 REVa

Rationale: ArgoUML is an application that edits an UML model. There is no need to have any network
defined while doing this.

Sakeholder: User of ArgopUML

Console output: Logging or tracing information

shall not be written to the console or to any file unless
explicitly turned on by the user.

REQI REVa

Rationale: ArgoUML is an application that edits an UML model. Any information written to anywhere
but the files that the user specifies the user won't know what to do with and it will be perceived as
garbage generated by the ArgoUML application.

Sakeholder: User of ArgoUML

3.4. Requirements set up for the benefit of the
development of ArgoUML

3.4.1.

Logging: The code shall contain entries logging

important information for the purpose of helping De-
velopers of ArgoUML in finding problems in ArgoUML it-

self.

REQ10 REVa

Rationale: When the developers are searching for some problem or when they ask any of the users to
help them pinpoint some problem such logging messages are very helpful.

Sakeholder: Developers of ArgoUML

31

Chapter 4. ArgoUML Design, The Big
Picture

Currently this is more of a base for discussion and ambition but hopefully this will mature and prove
useful.

The code within ArgoUML is separated in subsystems that each have afew responsibilities.

In Issuezilla each subsystem has its issues sorted in a subcomponent with the same name as the subsys-
tem. Furthermore the Diagrams subsystem has a set of subcomponents for issues connected to the spe-
cific diagrams.

This chapter gives an overall picture with a list of subsystems, their dependencies, and their main re-
sponsibility. Chapter 5, Inside the subsystems explains each subsystem in detail.

The subsystems are organized in layers. The purpose of the layersisto make it easy to seein what direc-
tion the dependencies are and thus allow us to know what dependencies are to be removed in the cases

where we have circular dependencies. This will also allow us to know which other subsystems that are
involved when testing a subsystem.

4.1. Definition of subsystem

All ArgoUML code is organized in subsystems.

Each subsystem has:

e A name

e A singledirectory/Java package where it resides
Subparts of the subsystem can reside in subdirectories of this directory. Auxiliary parts, implemen-
ted in other products, of the subsystems can reside somewhere else. Notice that each other product
used by ArgoUML is, in the design, located within one of the existing subsystems. This meansthat a
change of version or indeed a change of choice of such a sub-product is an internal matter for the
subsystem and should ideally not affect any other subsystem.

All public and protected methods of al public and protected classes in this directory constitute the
API of that subsystem.

» A section in the chapter Chapter 5, Inside the subsystems .
The section shall for each subsystem contain the responsibilities, the package name, the API, the

Facade (if any), al the plug-in interfaces (if any). This shall bein the first part of the section i.e. not
in a subsection. It should aso document the design of the subsystem. Thisisin subsections.

Each subsystem can have:

» aFacadeclass
The facade can be used by al other subsystems when using the subsystem.

The Facade class is called Subsyst enmNane Facade and is located in the subsystem package.

32

ArgoUML Design, The Big Picture

How it isused is primarily documented in the class file itself (as javadoc) but the more complex pic-
ture is documented in the Cookbook (in Chapter 5, Inside the subsystems).

Plug-in interfaces.

These are Facade objects where modules or plug-ins can connect themselves to modify or augment
the behavior of that subsystem.

The plug-in interfaces are also all located in the subsystem package and called Subsyst emNane
Pl ugi nPl ugi nType .Example: Model Pl ugi nDi agr am Model Pl ugi nType.

If the subsystem uses a callback-technique the callback is aways made to an interface defined by the
subsystem. The interface is also in the subsystem package and it iscalled Subsyst enNane Pl u-
gi nTypel nt er f ace . Example: Model Di agr anl nt er f ace, Model Typel nt er f ace.

ClassFromSomeOtherComponent

|
|
|
|
]
Component 1 |
<zInterfaces>
Zdlnterfaces=>
ComponentSomelnterface = _— e _
P :_ >CnmponentSomeDtherlnterface{] _:
fﬁ\ | |
| |
: | |
| | |
1 1
ComponentFacade ! i
I [ComponentPluginihatewver FluggableClass1
_______ 1
CompanentPluginiithatewer? FluggableClas=2

4.2. Relationship of the subsystems

Each subsystem that is used by other subsystems provide two ways for other subsystems to use them:

The Facade class

The use of Facade classis not wide spread in ArgoUML. Thisis because ArgoUML is traditionally
built as awhole and no subsystems were clearly defined.

A Facade class provides the most common functions other subsystems want to do when using that
subsystems to reduce the need of having to use anything else but the Facade class. The Facade class
should be very much more stable than the subsystem itself. Methods in the Facade should change
really slowly and only be removed after several months (and one stable release) of deprecation.

The Facade class is documented in the class file itself (as javadoc) and the more complex picture (if
needed) is documented in the Cookbook (in Chapter 5, Inside the subsystems).

33

ArgoUML Design, The Big Picture

* AnAPI with callsto public or protected methods.

Traditionally, the subsystems in ArgpUML communicate through public methods and public vari-
ables and the subsystems, as defined by the responsibilities, are spread over several packages setting
aside the Java visibility rules. For this reason it is not well-known or documented what public meth-
ods form part of a subsystem's APl and what public methods are internal to a subsystem. For this
reason, always exercise extreme caution when changing the signature of a public method. (See Sec-
tion 8.1, “How to work against the CV S repository”.)

In order to improve things, make it very clear when encountering and understanding the purpose of a
public method or class, if it is part of the subsystem's API or not (by improving the javadoc for that
method or class).

Try to help in moving the public API methods and classes from wherever, to the subsystem's direct-
ory/package using the proper deprecation procedure.

In order not to worsen things, always add new API classes and methods in the subsystem'’s directory/
package.

Thisway of communicating is still to be used when it is not convenient to use the Facade for a spe-
cific use of that subsystem.

Notice that the Facade is normally a part of the API or asimplified version of the API.

For each subsystem X in ArgoUML that uses the subsystem Y, the designer of the subsystem X must
decide if he wants to use the APl of Y when using the subsystem Y (putting a set of import
org.argouml.Y .internals.blabla.*; statements in each file of subsystem X that uses subsystem Y) or use
the Facade class of subsystem Y (putting only one import org.argouml.Y.Y Facade; in each file in the
subsystem X that uses subsystem Y).

The API solution makes the subsystem X depending on the subsystem Y meaning that when we change
the API of the subsystem Y we must also change subsystem X. The facade calls solution doesn't make
the subsystem X depending on the API of subsystem Y but just the Facade of subsystem Y.

The choice between the usage of the API or the Facade shall be stated in the Cookbook's description of
subsystem X in the list of used subsystems.

4.3. Low-level subsystems

These subsystems are infrastructure subsystems that just are there for every other subsystem to use.
They are all insignificant enough not to be mentioned when listing dependencies.

All these subsystems are all started and initiated (if needed) from the Application subsystem.

» Logging - see Section 5.15, “Logging”

* Internationalization - see Section 5.14, “Internationalization”.
* GUI - see Section 5.11, “The GUI”.

» Help system - see Section 5.13, “Help System”.

* JRE with utils - see Section 5.16, “JRE with utils”

ArgoUML Design, The Big Picture

Logging | Internatinnalizati-:-nl URE, Swing I

4.4. Model subsystems

These subsystems do not rely on any other part of ArgoUML to do their work (except the infrastructure).
They can al betested in full individualy i.e. independent of any other subsystem.

They contain all the information used by all other subsystems so for that reason they represent the model
inthe MV C pattern.

All these subsystems are all started and initiated from the Application subsystem.

e TheMode - See Section 5.1, “Mode!”.

 Todoitems- see Section 5.17, “To do items”.

hodel | i L F ram e | To do Hems | Help System |

T
|
| b E s
|
|
|

T T
| |
| |
E -l . | !
| |
| |
| }II_-C: | |
Logging

124

4\L‘ h ﬁg\g‘ 4
Internationalization HWRE, Swing

4.5. View and Control subsystems

These subsystems rely on the information in the model subsystemsin order to do their work.

All these subsystems are all started and initiated from the Application subsystem.

e Application - see Section 5.12, “Application”.

» Diagrams- see Section 5.3, “Diagrams”.

e Property panels - see Section 5.4, “Property panels’.
» Explorer - see Section 5.18, “Explorer”.

» Notation - see Section 5.6, “Notation”.

35

ArgoUML Design, The Big Picture

* Code Generation - see Section 5.8, “ Code Generation Subsystem”.
* Reverse Engineering - see Section 5.7, “Reverse Engineering Subsystem”.

* Module loader - see Section 5.19, “Module loader”.

iagrams FropertyFanel Explorer Fanel otation Feuverse Engineering ode Generation| odule Loader|

Fopplication

T T e
1 1 -
1 1
I 1 1 - ~
| 1
1 1

-

/"’ I / Y HH%}
odule Load24 - Ciagrams Frepery Fanels Explaorer Todo ltems

4.6. Loadable subsystems

These subsystems should be connected only through the interfaces provided by other subsystems. This
means that they can be individually enabled and disabled using the module loader. Note: The old mod-
ule loader does not have the possibility to disable modules. The new one has but is not widely used.
(July 2005).

» Java Code generation, Reverse engineering - see Section 5.9, “Java - Code generations and Reverse
Engineering”.

» Other languages - Code generation, Reverse engineering - see Section 5.10, “Other languages’.
» Criticsand checklists - see Section 5.2, “ Critics and other cognitive tools’.

e OCL - see Section 5.20, “OCL".

36

ArgoUML Design, The Big Picture

Hava

(Other languages |

T

|

|

|

|

|
17
T

Code Generation

Critics |

-
- -
N |
L .
- | -
-

Feverse Engineeringl

hdodule Loader |

|
To do ltems

37

Chapter 5. Inside the subsystems
Warning

This chapter is currently under rework with new subsystem organization.

Things that are not actually in place are: TargetManager

5.1. Model

Purpose - To remove knowledge from the rest of ArgoUML of what model repository is in use (e.g.
MDR, EMF, NSUML) and to give a consistent interface for manipulating data within those repositories.

The Model islocated inor g. ar gounl . nodel .
The Model isaModel subsystem. See Section 4.4, “Model subsystems’.
Currently thereis afull implementation using NSUML to store the OMG UML Model.

Development is in progress for an MDR implmentation storing both the OMG UML Model and Dia-
gram Interchange Model.

The decision of which implementation to use is controlled by the Model class which contols the imple-
mentations as aternative strategies (as in the Strategy Pattern - GOF p315)

The Model class provides the rest of ArgoUML with various interfaces through which ArgoUML can
mani pul ate the repository.

Currenty there are factory and helper interfaces for controlling the lifetime and properties of elementsin
the repository.

Aninterface is a'so made available to the Diagram Interchange Maodel should the repository implement-
ation contain such.

A ModelEventPump interface is provided through which ArgoUML can listen for changes in the repos-

itory in a consistent way. Implementations of this pump convert from the repoiroys specific events to

There are discussion underway to provide a facade (GOF p185) to this model. Once the facade is com-
plete thisis likely to take over as a replacement model interface. This will allow the complexities of the
existing interfaces to be rationalized without affcting the facade user.

The factories contain al methods that deal with creating and building model elements. The helpers con-
tain al utility methods needed to manipulate the model elements. Per section of chapter 2 of the UML
1.3 specification there is one factory and one helper.

Both helpers and factories (and the Facade and M odel EventPump) are interfaces that are fetched through
static methods in the Model object.

Because the same interface is used internally each implementation must provide objects for each of
these interfaces.

38

5.1.1.

5.1.2.

5.1.3.

Inside the subsystems

Factories

The factories contain in most cases a create method for each model element. Example: cr eat ed ass
residesin Cor eFact or y-interface.

Besides that, there are several build methods to build classes. The build methods have a signature like

publ i ¢ Object bui | dMODELELEMENTNAVE
(

par ans

Each build method verifies the wellformedness rules as defined in the UML spec 1.3. The reason for this
isthat NS-UML does not enforce the wellformedness rules even though non-well-formed UML can lead
to non-well-formed XMI which leads to saving/loading issues and all kinds of illegal states of
ArgoUML.

If you want to create an element you shall use the build or create methods in the factories. You are
strongly advised to use a build method or, if there is none that suits your needs, to write a new one re-
using the already existing build methods and utility methods in the helpers. The reason for thisis that the
event listeners for the newly created model element are setup correctly.

Question: Am | alowed to call the factories from any thread? Answer: The current checks are not writ-
ten to allow for multiple threads so don't!

Helpers

The helpers contain all utility methods for manipulating model elements. For example, they contain
methods to get all model elements of a certain class out of the model (see get Al | Mbdel el enent -
sOf Ki nd in Model Managenent Hel per).

To find a utility method you need to know where it is. As a rule of thumb, a utility method for some
model element is defined in the helper that corresponds with the section in the UML specification. For
example, all utility methods for manipulating classes are defined in Cor eHel per .

There are a few exceptions to this rule, mainly if the utility method deals with two model elements that
correspond to different sectionsin the UML specification. Then you have to look in both corresponding
helpers and you will probably find what you are searching for.

Question: Am | allowed to call the helpers from any thread? Answer: The current checks are not written
to alow for multiple threads so don't!

The model event pump

5.1.3.1. Introduction

Late 2002, the ArgoUML community decided for the introduction of a clean interface between the
NSUML model and the rest of ArgoUML. Thisinterface consists of three parts:

1. Themodel factories, responsible for creation and deletion of model el ements

2. Themodel helpers, responsible for utility functions to manipulate the model elements and

3. Themodel event pump, responsible for sending model events to the rest of ArgoUML.

39

Inside the subsystems

The model factories and the model helpers are described in Section 5.1.1, “Factories’ and Section 5.1.2,
“Helpers’ respectively.

In the beginning of 2003, in the work to replace NSUML, the need for this interface not to use any
NSUML classes was seen. The Model Facade was introduced to wrap model factories, model helpers,
and direct calls to NSUML but not the model event pump. In April 2004 a Model Event Punp-
interface was introduced to wrap the Uni Model Event Punp using Pr oper t yChangeEvent s.

The model event pump is the gateway between the model elements and the rest of ArgoUML. Events
fired by the model elements are caught by the pump and then 'pumped' to those listeners interested in
them. The main advantage of this model is that the registration of listeners is concentrated in one place
(see picture *). This makes it easier to change the interface between the model and the rest of
ArgoUML.

Besides this, there are some improvements to the performance of the pump made in comparison to the
situation without the pump. The main improvement is that you can register for just one type of event and
not for all eventsfired by some model element. In this respect the pump works as afilter.

fmodelelement] : MBase

flistenar! : MElementLlistener

fmodelelement? : MBase

flistenar? : MElementlistener

fmodelelements : MBase flistenard : MElementlistener

fmodelelement] : MBase

flistener! : MElementlListener

fmodelelement? : MBase fpump : UmidodelEventPump

flistener? : MElementlListener

fmodelelement? : MBase flistenerd : MElementlListener

The model event pump will replace all other event mechanisms for model events in the future. These
mechanisms (like UMLChangeDispatch and ThirdPartyEventlisteners for those who are interested) are
DEPRECATED. Do not use them therefore and do not use classes that use them.

5.1.3.2. Public API

Y ou might wonder: how does this all work? Well, very simplein fact.

A mode event (from now on a Event) has a name that uniquely identifies the type of the event. In most

40

Inside the subsystems

cases the name of the Event is equal to the name of the property that was changed in the model. In fact,
thereis even a 1-1 relationship between the type of Event and the property changed in the model. There-
fore most listeners that need Events are only interested in one type of Event since they are only inter-
ested in the status of 1 property.

TODO: What thread will | receive my event in? What locks will be held by the Model while | receive
my event i.e. isthere something | cannot do from the event thread?

In the case described above (the most common one) you only have to subscribe with the pump for that
type of event. Thisis explained in section Section 5.1.3.2.1, “ How do | register a listener for a certain
type event ” and Section 5.1.3.2.2, “How do | remove alistener for a certain event”

Besides the case that you are interested in only one type of event (or a set of types), there are occasions
that you are interested in all eventsfired by a certain model element or even for al events fired by a cer-

tain type of model element. For these cases, the pump has functionality too. This is described in section
Section 5.1.3.2.3, “ Hey, | saw some other methods for adding and removing?”.

5.1.3.2.1. How do | register a listener for a certain type event

Thisisreally very simple. Use the model

addModel Event Li st ener (Propert yChangelLi stener |istener, Object nopdel el ement,

like this:

String

Model . get Punp() . addModel Event Li stener (this, nodel el enentl| Aml nterestedln, "lam nter

Now your object this gets only the Event s fired by model Elementl Aminterestedin that have the name
"lamlnterestedInThisEventnameType".

5.1.3.2.2. How do | remove a listener for a certain event

Thisisthe opposite of registering alistener. It all works with the method

renoveModel Event Li st ener (Propert yChangeLi stener |istener, bject nodel El enent, Str

on the Model Event Punp likethis:

Model . get Punp() . r enoveModel Event Li stener (thi s, nodel el enment | Al nt er est edl n,
Now your object is not registered any more for this event type.
5.1.3.2.3. Hey, | saw some other methods for adding and removing?
Y es there are some other method for adding and removing. You can add a listener that is interested in
ALL eventsfired by acertain model elements. Thisworks with the method:
addMbdel Event Li st ener (Propert yChangeLi stener |istener, Object nodel el enent)
Asyou can see no hames of events you can register for here.
Furthermore, you can add alistener that isinterested in severa types of events but coming from 1 model

element. This is a convenience method for not having to call the methods explained in section Sec-
tion5.1.3.2.1, “ How do | register alistener for a certain type event ” more than once. It works via:

41

"lam n

Inside the subsystems

addModel Event Li st ener (Propert yChangelLi stener |istener, Object nodel el ement,

Y ou can pass the method an array of strings with event names in which your listener isinterested.

Thirdly there is a very powerful method to register your listener to ALL events fired by a ALL model
elements of a certain class. Y ou can understand that using this method can have severe performance im-
pacts. Therefore use it with care. The method is:

addd assModel Event Li st ener (Propert yChangelLi st ener |istener, Object nopdel d ass)

There are also methods that allow you to register only for one type of event fired by all model elements
of acertain class and to register for a set of types of eventsfired by all mod elements of a certain class.

Of course you can remove your listeners from the event pump. This works with methods starting with
remove instead of add.

5.1.3.3. Tips

1. Don't forget to remove your listener from the event pump if it's not interested in some event any
more.

If you do not remove it, that's gonna cost performance and it will give you a hard time to debug all
the logical bugs you see in your listener.

2. When you implement your listener, itiswiseto NOT DO the following:
enent Event event) {

I
ng for event type 1
ng for event type 2

/1l do my t
/1 do ny t
Il etc.

propert yChanged(ME
hi
hi

Thiswill cause the things that need to be done for event type 1 to be fired when event type 2 do ar-
rive.

This still happens at a lot of places in the code of ArgoUML, most notably in the model Changed
method of the children of FigEdgeM odel Element.

5.1.3.4. Possible investigation points and improvements

Should we use our own event types?

Should we replace the MEI enrent Li st ener with Propert yChangeli st ener and MEl enen-
t Event with Pr opert yChangeEvent ? One reason we havn't done so yet is that it involves alot of
work and testing.

Change the implementation of the Event pump itself? Not the API but the implementation!

At the moment the event pump does not use the AWT Event Thread for dispatching events. This can
make ArgoUML slow (in the perception of the user).

Use the sandard data structure that Swing wuses for event registration (i.e.
j avax. swi ng. Event Li st ener Li st). Would this be an improvement?

42

Inside the subsystems

5.1.4. NSUML specifics

5.1.5.

Thisis currently implemented using NSUML internally to implement the UML model. The planisto re-
place NSUML with some JMI compliant model instead (probably MDR), and for that reason all APIsto
the Model subsystem using NSUML objects are to be replaced by interfaces without NSUML object and
eventually removed.

The NSUML mode itself does not define enough 'business' logic to be directly used and the factories
and helper classes provide a set of interfaces that wraps al functions of NSUML.

In the NSUML implementation factories contain delete methods but they are only used internally within
the Model subsystem.

How to work against the model

NS-UML is used within the Model subsystem to keep all data structures in place. Eventually we will
change that to IMI/MDR that is newer and better and will take us into UML 1.4, UML 1.5 and UML
2.0. Working directly against NS-UML or IMI/MDR will make changes in the NSSUML or IMI/MDR
affect large portions of the code. For this reason we have in the Model subsystem, a set of classes that
lay between the NSSUML and JMI/MDR that hides the APIs of NS-UML or JMI/MDR between
something that will not change while moving between them. This is the API classes of the Model sub-
systemi.e. Factories, Helpers, Event Pump (where to register for changes).

Here follows a list of how different things are done for the purpose of making the transition easy.
Everything within ArgoUML should access the Model subsystem through the interfaces in the
org. argouni . nodel package. The NSSUML or IMI/MDR and whatever other implementation we
could eventually come up with would provide the implementation of those interfaces.

Table5.1. How to work against the model

What NS-UML (use only|[JMI/MDR (use only|Modée subsystem
within Modéd subsys-|within Model subsys-
tem) tem)

Test that an|o instanceof | 77?2CLASSNAME??? (Model.getFacade() .isAnodel el e-

Object o|Mnodel el enent - .islnstanceOf(RefObject|ment t ype(o) # boolean

has a cer-|t ype # boolean toTest, String class

tain type Name) # boolean

Get asingle|((Mnodel el errent - |((RefFeatured)obj) Model .getFacade() .getpr opert y(o)

valued type)o) refGetValug(String|# Object

model ele-|.getpr opert y() # mod-|propName) #

ment from|el element ?2?7?7Type???

an Object o

Get a multi|((Mnodel el erent - |((RefFeatured)obj) Model .getFacade() .getpr opert y(o)

valued type)o) refGetVaue(String # Iterator or Collection (total confu-

property .getpr oper ty() # Col-|propName) # Collection |sion!)

from an|lection

Object 0

Create a|MFactory ?7CLASSNAME??? Model

new model |.getDefaultFactory() .creatl nstance(String|.getModel El erent Domai n?Fact-

element of |.createType() "Type", List argument)|ory

type Type: # RefObject .buildnodel el enent t ype(args) or
Model
.getModel El ement Donai n?Fact-
ory .createnodel el ement t ype() to
create them completely empty.

43

Inside the subsystems

What NS-UML (use only|[JMI/MDR (use only|Modd subsystem
within Model subsys-{within Model subsys
tem) tem)
Delete a Model .getUmlFactory() .delete(ob-
model ele- j ect)
ment
Register for|((MBase) 0)|((MDRChangeSource) |Model.getPump()
notification |.addM ElementListener(|obj) .addM odel EventL istener(
that a mod- | MElementListener €l) .addChangeL istener(???) |(PropertyChangeListener)li, Object o,
e element String[] eventnames)
Object o
has
changed:
Register for|Not possible! ((MDRChangeSource)ob | Model .getPump()
notification] .refClass()) | .addModel EventListener(
on al mod- .addChangelL istener(???) |(PropertyChangeL istener)li,
e elements (Object)Model .getMetaTypes()
of a certain .getMODELELEMENTTY PE(),
type Type: String[] eventnames)
How do I|(new XMI-|new XMIWriter(??7?) Handled by the Persistence subsystem.
get the|Writer(MModel m,
model as|Writer Stream)).gen()
XMI on the
stream
Stream:

5.1.6. How do I...?

...add anew model element?

Make a parameterless build method for your NSUML model element in one of the UML Factories
(for instance Cor eFact or y). Stick to the UML 1.3 spec to choose the correct Factory. The pack-
age structure under or g. ar gound . nodel . un follows the chapters in the UML spec so get it
and read it! In the build method, create a new model element using the appropriate create method in
the factory. The build method e.g. is a wrapper around the create method. For all elements there are
aready create methods (thanks Thierry). For some elements there are already build methods. If you
need one of these elements, use the build method before you barge into building new ones. Initiaize
all things you need in the build method as far as they don't need other model elements. In the UML
spec you can read which elements you need to initialize. See for example bui | dAtt ri but e()

for an example.

If you need to attach other already existing model elements to your model element make a
bui | dXXXX(MVbdel el enent toattachl, ...) method in the factory where you made
the build method. Don't ever call the create methods directly. If we use the build methods we will al-
ways have initialized model elements which will make a difference concerning save/load issues for
example.

Now you probably also need to create a Property Panel and a Fig object (See Section 5.3.3.5,
“Creating anew Fig (explanation 2)").

...create anew create method?
Createit in the correct factory.

...create anew utility method?

Inside the subsystems

Createit in the correct helper.

5.2. Critics and other cognitive tools

5.2.1.

Purpose - to provide cognitive help for the User. This help is based on the current model that the User
works with.

The Criticsarelocated in or g. ar goumr . cogni ti ve.
The Criticsis a Loadable subsystem. See Section 4.6, “ L oadable subsystems”.

The Ciritics subsystem depends on the Model that it works against to take all decisions and the To Do
Items used to present the information.

This subsystem contains the following main class types:
» Critics provide help to find artifacts in the model that do not obey simple design "rules’ or "best
practices’.

» Checklists provide help for the user to suggest and keep track of considerations that the user should
make for each design element. Checklists are currently (0.9.5 and 0.9.6) turned off.

» ToDoltems provide a way for the Critics to communicate their knowledge to the User and let the
User start Wizards.

* Wizards are step by step instructions that fix problems found by the Critics.

Main classes

Hereisanillustration of the main classes implementing critics

45

Inside the subsystems

Critic

+Critici

+getCritickey]: Configurationkey
+getCriticCategoryd: String

+getCritichame : String

+critique idm: Object, degr:)z woid

+ postlte miite m: , dm: Object, dzgr:): void

+ predicate idm: Object, dsgr:): boolean

+ =tillvalidii: , dzgr:): boalean

+supportsid:) boolean
+getSuppartedDecizionsd: Vector
+addSupportedDecizionid: 3 woid
+supportsig:) boolean

+getSupportedCoalsd: Yectar
+addSupportedGoalig:): wvoid
+containsKnowle dge Typs itype : 5tring): boolean
+addKnowle dge Type ttbype : Stringd: woid
+getinowledgeType s Yectorset

+ sethnowledge Type sikt: Yectorfet): void

+ sethnowledge Type sitl: String): woid

+ zetKnowledge Type sitl: String, t2: String): woid
+sethnowledge Type sitl: 5tring, t2: String, t2: String): woid
+static reazonCode Foris: String): int
+getTrigge rMazki(: long

+addTrigge ris: String): void

+ matchReasonipatte rnCode: long): boolzan
+expandide sc: String, offs: YectorSet): String
+ge tC larifie rd: lcon

+izActive J: boolean

+ b2 Active 0 woid

+ b Inactive 0 woid

+addControlReciname: String, controlCata: Object): Object
+getControlReciname: String): Object
+isEnabledd: boolean

+zetEnabledis : boolean): void

+ snoozeOrde rd: void??

+snooze 0 woid

+unznooze §: woid
+izRelevantToDecisionsidsgr:): boolean

+isRe levantToGoalsidsgr:) boalean

+ make Wizard ite m: §: Wizard
+getWizardClazsiite m:): Class

+initWizardiw: Wizard): void
+getDecizionCategon: String
feetDecisionCategoryic: String): woid
+getCriticType 02 5tring

+getExpe rtEmail: String

+setExpe rtEmailladdr: String): void
+getHeadline idm: QObject, dsgr:): String
+getHeadline jpffe nde rs: YectorSet, d=gr: j: S5tring
+getHeadline &: String

+ setHeadline (h: String): waid

+getPriorityioffe nde rs: Yectorset, dzar) int

+ setPriorityip: int): void

+getPriarityd: int

+getDe scriptionioffe nders: VectorSet, dzar:): String
+setDescriptionid: String): void

+getDe scriptionTe mplate 0: String

+getMore InfollFLioffe nde rs: YectorSet, dsgr:): String
+setMore InfoURL{m: String): woid

+gethaore InfollRLO: String

RzetArginame: String, value: Object): woid
FoetArginame: String): Ohject

+getAngz(: Hazhtable

+zetArgsih: Hashtable): void

+toDolte midm: Object, dsgr:)2 woid™
+canFixltiitam:): boalean

+ fixltlite m: , arg: Object): void

+toStringd: String

from org.anrgouml.cognitice .critics

CrUnL

from arg.argouml.uml.cagnitice .critics

CAREFUL: attribute s and methods miszing

CrConsiderSinglaton

+CrConside rsingletond
msd(s: String): void

+ predicate 2{dm: Object, dzgr: Dezigner): boolean|

from
org.argouml.patte rn.cognitive critics

46

Inside the subsystems

Critics are currently located in:

org.argouml.cognitive.critics

These are basic critics, which are very general in nature. For example ArgoUML keeps nagging
when Model elements overlap, which makes the Diagram hard to read.

This package also contains the base classes for the handling.

org.argouml.uml.cognitive.critics

These are Critics which are directly related to UML issues (well, more or less). For example, it will
glaag;s Yvhen a class has too many operations, because that makes it hard to maintain the particular
This package also contains Wizards used by these Critiques.

org.argouml.pattern.cognitive.critics

These are criticsrelated to patterns. Currently they deal only with the Singleton pattern
org.argouml.language.java.cognitive.critics

These are critics which deal with java specific issues. Currently thisis only awarning against model-
ing multiple inheritance.

The Base classfor Wizardsisor g. ar gounl . ker nel . W zar d.

Checklists are located in the package org.argouml.cognitive.checklist.

Helper classes for To Do Items, To Do Pane, Wizards and the Knowledge Types are located in the pack-
age org.argouml.cognitive.ui.

5.2.2.Howdol..?

...create anew critique?

Currently the only way to add a new critique is to write a class that implements it so that is described
here. There have however been ideas on a possibility to build critics in some other way in the future,
asaset of rulesinstead of java code.

Create a new critic class, of the form Cr XxxxYyyyZzzz , extending Cr UML. Typically your new
class will go in the package or g. ar goum . um . cogni tive.critics, butitcouldgoinone
of the other cogni tive. criti cs packages.

Write a constructor, which takes no arguments and calls the following methods of Cr UML:

» setHeadling(""); to set up the locale specific text for the critic headline (the one liner that ap-
pears in the to-do pane) and the critic description (the detailed explanation that appears in the to-
do tab of the details pane). The String parameter is ignored.

e addSupportedDecision(UM L Decision.decAAAA); where AAAA is the design issue category this
critic fallsinto (examplesinclude STORAGE, PATTERN METHODYS).

e setPriority(ToDoltem.BBB_PRIORITY); where BBB is one of LOW MEDI UMor HI GH, to set

47

Inside the subsystems

the priority for the critic in the to-do pane.

e addTrigger("UM. Met a-d ass"); where UML Met a- Cl ass is a UML Meta-Class, with
initial lower capital, e.g. "associationEnd". The intention is that critics should only trigger for
elements (or children) of particular UML meta-classes. | (Jeremy Bennett February 2002) be-
lieve this code is not yet working so you can probably leave it out. Y ou can have multiple calls to
this method for different meta-classes.

After this add a method public boolean predicate2(Object dm, Designer dsgr);. This is the de-
cision routine for the critic. dmis the UML entity (an NSUML object) that is being checked. The
second argument, dsgr is for future development and can be ignored. The Cri ti ¢ class conveni-
ently defines two boolean constants NO_PROBLEMand PROBLEM _FOUND to be returned according
to whether the object is OK, or triggers the critic.

dmmay be any UML object, so the first action isto seeif it is an artifact of interest and if not return
NO_PROBLEM

The remaining code should examine dmand return NO_PROBLEMor PROBLEM_FOUND as appro-
priate.

Having written the code you need to add the text for the headline and description to the cognitive re-
source bundles. These are in the package org.argounl .i18n, in the file crit-
i cs. properties. You need to add two keys for the head and description, which will be nhamed
respectively critics. O XxxxxYyyyZzzz-head and cri ti csCr XxxxxYyyyZzzz- desc.
There are plenty of examplesto look at there. The other files for British English, Spanish, ... respect-
ively) are the responsibility of the corresponding language team. Notify the language teams that
thereis work to be done.

In method I nit of the class org. argoum . um . cognitive.critics.lnit, add two
statements:

private static Critic cr XxxxxYyyyZzzz = new Cr XxxxxYyyyZzzz();
B Agency. regi ster(cr XxxxxYyyyZzzz, DesignhMaterial ds);
If you want to add a critic to a design material which is not already declared (for example the Extend
class), you will have to add athird statement to the | ni t method aswell, which is:

java.l ang. C ass XxxYyyyZzCd s = MXxxYyyyZzIl npl . cl ass;
where MXxxYyyyZzI npl .class should be part of the NovoSoft UML package.

Finally you should get a new section added to the user manual reference section on critics. The pur-
pose of thisisto collect all the details and rationale around this critic to complement the short text in
the description. It should go in the ref_criticsxml file and have an id tag named
critics.Cr XxxYyyyZzzz.

..write thetest in a critique?

The critiques tests are essentially a combination of conditions that are to be fulfilled. The conditions
are often simple tests on simple model elements.

The class or g. argounl . cognitive.critics.CriticUtils contains static routines that
are commonly needed when writing pr edi cat e2 (for example to test if a class has a constructor).
If you find you are writing code that may be of wider use than just your critic, you should add it to
CriticUtil s rather than putting it inyour critic.

48

Inside the subsystems

For commented examples to copy, look at
org.argoum . pattern.cognitive.critics. CrConsiderSi ngl et on,
org.argoum . pattern.cognitive.critics.CrSingletonViolated and

org.argoum . um . cognitive.critics.CrConstructorNeeded.

o _fixacritique?
L ocate the critique and insert some logging code. Y ou should make sure that you understand al the
implications of changes, therefore it is a good ideato see what makes the critic nag in the first place.
But rest assured: some of the critics haven't been updated to reflect the latest changes in ArgoUML,
so thisis a procedure which is well worth digging into, since it gives you also some exposure to re-
lated NSUML elements.

» ...changethetext of acritique?

The texts of the critics should be in the according localization files and resource bundles. Be careful:
in some critics the text is still in the critic, but if you change that, you will notice that it doesn't have
any effect.

e ...get my critic to trigger?

Thisisasuggested way to troubleshoot if the critic doesn't trigger.

1. Check that the settings for critics are enabled (Toggle Auto Critique)

2. Check that your critic is registered in or g. ar goum . um . cognitive.critics.Init
with the right class (e.g. check inheritance structure against UML spec)

3. Check that your particular critic is enabled in Browse Critics
4. (IMPORTANT) Check that the design material is actualy found in

org.argoum . um . cognitive.critics.ChildGnUM. This method is incomplete
and might not find all model elements!

5.2.3. org.argouml.cognitive.critics.* class diagram

49

Inside the subsystems

Crilic.
(A ST R o)
’
‘ CurbiecislonChd . - R I .
S i e el . o W =,
. e tnpa-ingel . b
- ; IS EnabledCh
’ P Lo 1ram 23 srgeur zgrte T tize)
o s L Lo narbaga:
: - 4 A
v - " -
s . Y T -
" Iy _ L .
L LT CumpusileCd S
(rem zr; gouLacgnies aibes; -

thazlLs ket

P HotSnaozedCh
meEchs oy sroag Ll

e I A [- - Felin reet)
1 2BOR F_FOUNT T i

+THIZE ORIER H AntiCH

;_f\rfl:ﬁar e T TN =13 63001 Cen TG CHICS:

b foceta pachege;

—_santrc Rece / =

it ;

—Hecisioniatepery ! #
~_dszonplc-) ~ (0] sl

S Fiuoass Girem =g a1z oure g erbzs)] TR

eadine ey bl ok

_ifae el

& now zdgevpes

e e crg M o e

~_noieircURL
il

1w

—_ ity

sl Iz 5 g) CrZeroLengthEdge
& suppen:Coals ‘75”":5‘["@"‘_:” 1102 303 srgou~L 370k T3]
- 5 =anznl il
22 dusrilast +THRESHILD
L Gl lap
- Y W 1 I g e e
\ i R wadsHds
H o CampowndLritic
1 P

e e VT ek i)

Angency & ctics

v 212w devanlivs i

+_r_niiinstapliad
-z rz =onC itics

Histu iyl aor G g

(£ SEUF AR o i)

5.3. Diagrams

Purpose - To present the diagrams to the user and allow the user to manipulate the diagrams through the
view.

The Diagrams are be located inor g. ar goum . unl . di agr am
The Diagramsis a View subsystem. Section 4.5, “View and Control subsystems’.
The Diagrams are depending on the Model subsystem and the GUI.

The classes in this subsystem are extensions of the GEF base classes (GraphModels, Figs, Selections
etc) together with some supporting classes.

This subsystem has no direct access to a specific implementation of the OMG model repository.
However it does update such arepository viathe interface of the Model Subsystem.

Thereis an intention (Bob Tarling) to split this subsystem into several smaller subsystems, one for each
diagram type. Thisisto alow for indiviual diagram reuse by other applications and to allow us to fast

track developers onto a specific subproject containing that subsystem (Michael MacDonald and se-
guence diagramsin mind).

5.3.1. Multi editor pane

50

Inside the subsystems

The multi editor pane is the pane with the diagram editor in it. Normally it is placed in the upper right
corner of the application. One of the feature requests is to make the pane dockable so maybe it won't be
there in the future.

The multi editor pane consists of tabs that hold editors as you can see in the class diagram.

..ITabbe-:IF'anel JPanel <<lnterfaces=>

TabModelTargel]

n.m ‘r'_f":.l

|
_tabs '

Tal:uSpawnal:-Iel Tal:uDiagramI

MultiEditorPane

_target

UMLDiagramI

At the moment there is only one editor tab in place. Thisisthe TabDi agr amthat shows an UMLDia
gram, the target.

The TabDi agr amis spawn-able. This means that the user can double click the tab and the diagram will
spawn as a separate window.

The target of the Mul ti Edi t or Pane is set viathe set Tar get method of the pane. This method is
called by the set Tar get method of the Pr oj ect Br owser . The pane's set Tar get method will
call each set Tar get method of each tab that is an instance of TabMbdel Tar get . Besides setting
the target of the tabs, the set Tar get method also calls Mul ti Edi t or Pane.select(Object 0). This
selects the new target on atab. This probably belongs in the set Tar get method of the individual tabs
and diagrams but that's how it'simplemented at the moment.

5.3.1.1. How do | ...?

e ..addanewtabtotheMul ti Edi t or Pane?

Create anew classthat's a child of JPanel and put the following linein argo.ini:

multi: fully classified name of new tab cl ass

51

5.3.2.

5.3.3.

Inside the subsystems

How do | add a new element to a diagram?

To add a new element to a diagram, two main things have to be done.

1. Create new Fig classes to represent the element on the diagram and add them to the graph model
(org.argouml.uml.diagram.xxxx.XxxxDiagramGraphM odel .java) and renderer
(org.argouml.uml.diagram.xxxx.ui.XxxxDiagramRenderer.java).

2. Create a new property pand class that will be displayed in the property tab window on the details
pane. Thisisdescribed in Section 5.4, “Property panels’.

Throughout we shall use the example of adding the UML Extend relationship to a use case diagram.
This alows two Use Cases to be joined by a dotted arrow labeled «ext end» to show that one extends
the behavior of the other.

The classes involved in this particular example have al been well commented and have full Javadoc de-

scriptions, to help when examining the code. You will need to read the description here in conjunction
with looking at the code.

How to add a new Fig

The new item must be added to the tool-bar. Both the graph model and diagram renderer for the diagram
will need maodifying for any new fig object.

5.3.3.1. Adding to the tool-bar

Find the diagram object in um / di agr am’ XXXX/ ui / UMLYYYYDi agr am j ava, where XXXX is
the diagram type (lower case) and YYYY the diagram type (bumpy caps). For example um / di a-
grani use_case/ ui / UMLUseCaseDi agr am j ava. This will be a subclass of UMLDiagram (in
urm / di agr anif ui / UMLDi agr am j ava).

Each tool-bar action is declared as a protected static field of class Act i on, initiated as a new Cnd-
Cr eat eNode (for nodal UML elements) or a new CrrdSet Mbde (for behavior, or creation of line
UML elements). These classes are part of the GEF library.

The common ones (select, broom, graphic annotations) are inherited from UMLDiagram, the diagram

specific ones in the class itself. For example in UMLUseCaseDiagram.java we have the following for
creating Use Case nodes.

protected static Action _actionUseCase =
new CndCr eat eNode(Model Facade. USE_CASE, "UseCase");

Thefirst argument is the class of the node to create from NSUML, the second a textual toal tip.

For creating associations we have:

protected static Action _actionAssoc =
new CndSet Mode(MbdeCr eat ePol yEdge. cl ass,
"edged ass", MAssoci ationl npl. cl ass,

52

Inside the subsystems

"Associ ation");

The first argument is a GEF class that defines the type of behavior wanted (in this case creating a poly-
edge). The second and third arguments are a named parameter used by ModeCr eat ePol yEdge
("edgeClass") and itsvalue (MAssoci at i onl pl . cl ass). Thefina argument is atooltip.

The tool-bar is actually created by defining a method, i ni t Tool Bar () which addsthe toolsin turn to
the tool-bar (a protected member named _t ool Bar).

The default constructor for the diagram is declared private, since it must not be called directly. The de-
sired constructor takes a name-space as an argument, and sets up a graph model (UseCaseDi agr am
GraphModel), layer perspective and renderer (UseCaseDi gr anmRender er) for nodes and edges.

5.3.3.2. Changing the graph model

The graph model is the bridge between the UML meta-model representation of the design and the graph
model of GEF. They are found in the parent directory of the corresponding diagram class, and have the
general name YYYYDi agr antar aphModel . j ava, where YYYY is the diagram name in bumpy caps.
For example the use case diagram graph model is in um / di a-
gram use_case/ UseCaseDi agr am aphMbdel . j ava

The graph model is defined as UMLMut abl eGr aphSupport, a child of the GEF class Mut abl e-
GraphSupport, and should implement Mut abl eG- aphModel (GEF).

5.3.3.3. Changing the renderer

The renderer is responsible for creating graphic figs as required on the diagram. It is found in the same
directory of the corresponding diagram class, and has the general name YYYYDi agr anRender -
er. j ava, where YYYY is the diagram name in bumpy caps. For example the use case diagram graph
model isinum / di agr anf use_case/ ui / UseCaseDi agr anRenderer. j ava

This provides two routines, get Fi gNodeFor (), which provides a fig object to represent a given
NSUML node object and get Fi gEdgeFor (), which provides a fig object to represent a given
NSUML edge object.

In our example, we must extend get Fi gedgeFor () so it can handle NSUML MExtend objects
(producing aFi gExt end).

5.3.3.4. Creating a new Fig (explanation 1)

New objects that are to appear on a diagram will require new Fig classes to represent them. In our ex-
ample we have created FigExtend. They are placed in the same directory as the diagram that uses them.

The implementation must provide constructors for both a generic fig, and one representing a specific
NSUML object. It should provide a setFig() method to set a particular figure as the representation. It
should provide a method canEdit() to indicate whether the Fig can be edited. It should provide an event
handler model Changed() to cope with advice that the model has changed.

5.3.3.5. Creating a new Fig (explanation 2)

Assuming you have your model element already defined in the model and your PropPanel for that model
element you should make the Fig class.

1. For nodes, that are Figs that are enclosed figures like Fi gCl ass, extend from Fi gNode-
Model El enent . For edges, that are lines like Fi gAssoci ati on, extend from Fi gEdge-

53

Inside the subsystems

Model El enent . The name of the Fig has to start with (yes indeed) Fig. The rest of the name
should be equal to the model element name.

2. Create adefault constructor in the Fig. In this default constructor the drawing of the actual figureis
done. Here you draw the lines and text fields. See Fi gC ass and Fi gAssoci ati on for an ex-
ample of this.

3. Create a constructor Fi gMyMbdel el enent (Cbj ect owner) . Set the owner in this method
by calling set Onner . Make amethod set Oaner that overridesit's super. Let the method call it's
super. Set al attributes of the Fig with data from it's owner in this set Oamer method. See
set Omer of Fi gAssoci at i on for an example.

4. Create an overridden method prot ected void nodel Changed() . This method must be
called (and isif you implement the fig correctly) if the owner changes. In this method you update
thefigif the model is changed. See Fi gAssoci ati on and Fi gC ass for an example.

5. If you have text that can be edited, override the method t ext Edi t ed(Fi gText text).Inthis
method the edited text is parsed. If the parsing is smple and not Notation specific, just do it in
textEdited. But for most cases: delegate to ParserDisplay. See the method par seAttri bute in
ParserDisplay for an example. Stick to the Notation you are using to have the right parsing scheme.
Thereiswork to be done here but please don't make it an even bigger mess:)

6. Make an Action that can be called from the GUI. If you are lucky, you just can use CndCr eat eN-
ode. Seefor examples UMLCl assDi agr amof using CndCr eat eNode.

7. Adapt the method canAddEdge(Obj ect 0) on subclasses of G- aphModel if you are build-
ing an edge so it will return true if the edge may be added to the subclass. Subclasses are for ex-
ample Cl assDi agr anG aphMbdel and UseCaseDi agr anGr aphMbdel . If you are build-
ing anode, adapt canAddNode(Obj ect 0).

8. Adapt the method get Fi gedgeFor on implementors of G aphEdgeRender er if you are im-
plementing an edge so it will return the correct Fi gEdge for your abject. If you are implementing
a node, adapt the method get Fi gNodeFor on implementors of G- aphNodeRender er. In
ArgoUML classeslike Cl assDi agr anRender er implement these interfaces.

9. Add an image file for the buttons to the resource directory or g/ ar gourd / | mages. Thisimage
file must be of GIF format and have a drawing of the button image to be used in itself. This image
is aso used on the PropPanel. The name of the Image file should be nodel el ement . gi f

10. Add buttons to the action you created on those places in the GUI that have a need for it. This
should be at least the button bar in each diagram where you can draw your model element. Prob-
ably the parent of your model element (e.g. class in case of operation) will want a button too, so
add it to the PropPanel of the parent. In case of the diagrams, add it in UMLdi agr am j ava, soin
UMLCl assDi agr amif it belongs there. In case of the Pr opPanel s, most of them don't use ac-
tions, they implement them directly as methods in the PropPanel themselves. Please don't do that
but use an action so we have one place of definition.

5.4. Property panels

Purpose - to provide aform view of the diagrams and objects in the model. The contents of the model is
modifiable.

The Property panelswill belocated inor g. ar gourd . uni . 2.
The Property panelsisaView subsystem. See Section 4.5, “View and Control subsystems’.

The PropPanels for the diagrams are in or g. ar gound . urm . di agr am ui and the property panels

54

5.4.1.

Inside the subsystems

for UML objectsareinor g. argoum . um . ui . UML path .

Adding the property panel

Property Panels for UML model elements are found as class Pr opPanel XXX. j ava, where XXX isthe
UML meta-class. They are in sub-packages of org.argouml.uml.ui corresponding to the XXX NSUML
packages, which in turn correspond to their section in the chapter 2 of the UML 1.3 spec.

So for our example we creaste a new class PropPanel Extend in package
org. argouni . um . ui . behavi or. use_cases.

Any associated classes that do not fall into the UML classification are provided in org.argouml.uml.ui.

Typically the constructor for the new proppanel class invokes the parent constructor, and then builds the
fields required on the property tab. The parent constructor may need an icon. If you need a new icon, it
should be placed in or g/ ar goum / | mages and acall tol ookupl con() made (note that thisisa
utility method of the parent PropPanel class). For our example we had to add Ext end. gi f .

From the ArgoUML V0.7 cookbook (updated to mention the current path): “ You will need to make an
icon, in .gif format, 18 X 19 pixels, with the transparent background color set to white. Place thisfilein
the org.argouml.Images directory (it must be named like Name.gif). Thisicon will automatically be used
in the toolbar and in the Navigation pane. ”

Finaly the property panel must be added to the list of property panels in the run() method of the
TabPr ops class, with anew call of panel s. put (). If you don't do this, navigation listeners won't
know about it!

The content of the property panel is created as a grid with columns (1 column if there are only a few
fields, 2 or 3 if there are more). Each row of each column contains a caption (i.e. label) and its corres-
ponding field.

A caption and its field may be added with one of a small number of utility methods which shield you
from the layout stuff: addField() and addSeperator().

A button may be added to the toolbar with the utility method addButton().

Every field is built from Java Swing components. However these are extended by ArgoUML to help in
the provision of action methods for fields in the property tab. Severa fields involve lists, and these re-
quirein addition list models to compute the members of the list.

Thefields that you might add to a property panel include:

» Simple editable text. For example the Name field. Supported through the UMLText Fi el d2 class.

e A drop down box (aka combobox) of options that can be selected. Supported by the UMLComt
boBox2 class. Used e.g. for the type of a parameter.

» A check box. This one does not use a seperate model class, thanks to the simplicity of the represen-
ted boolean value. Supported by the UM_CheckBox2 class. Used e.g. for the concurrency checkbox
on acomposite state.

» A radio button. These always come in a group. Supported by the UM_Radi oBut t onPanel class.
Used e.g. for selecting the visibility on the properties panel of aclass.

e A list. Used e.g. for the Generalizations field on the proppanel of a class. The non-editable list is
supported by the UMLLI st 2 class and its child UMLLi nkedLi st . The latter also exists in the
form of UMLMut abl eLi nkedLi st, which alows adding, creation and deleting elements by
popup menu. Used e.g. for the subvertex list for a composite state.

55

Inside the subsystems

The list model isusually provided by a sub-class of UMLModel El erment Li st Mbdel 2. Thereisa
variant UMLModel El ement Or der edLi st Mbdel 2 intended for ordered links, which adds a few
items to the pop-up menu, allowing sorting. This latter model is used e.g. for attributes of a class.

* A drop down box of options that can be selected. This one exists in several versions, each having
different possibilities. The most simple version is the UM_ConboBox2.

The UMLEdi t abl eConboBox allows editing the selected item.

The UMLSear chabl eConboBox allows editing the selected item. See e.g. the Operation com-
bobox on the callevent properties panel.

Then there is a variant with a seperate button for navigation to the property panel for the currently
selected item. This is supported by theUMLConboBoxNavi gat or class. Used e.g. for the stereo-
typefield.

» An editable multiline text area. Supported by the UMLText Ar ea2 class. Used e.g. for the text field
of aUML Comment.

Examples of these fields in more detail follow below.

5.4.1.1. Adding a simple list field

For example we need to add a field to the use case property panel for the extends relationships that de-
rive from this use case.

Thisfield consists of alabel and a scrollable pane (JScr ol | Pane) containing the list (JLi st), which
may be empty, or contain extend relationships from this use case.

Rather than a straight JLi st , we use its child, UMLLi nkedLi st , which adds several features to the
standard JList specifically for ArgopUML's properties panels.

The constructor for UMLLI nkedLi st requires two arguments, a list model and a flag to indicate
whether to show an icon.

The list model should be a subclass of UMLModel El enent Li st Model 2, a subclass of the Swing
Def aul t Li st Mbdel whichimplements Abst ract Li st Model . The UM_LModel El enment Li st -
Model 2 implements two interfaces: one that listens to target changes, and one that listens to UML
model changes.

5.4.1.1.1. The list model

In our example we create UM_LUseCaseExt endLi st Mbdel . Its constructor takes no arguments.
However, we need to provide the parent class with a NSUML event name by invokeing the constructor
of the parent class, with the event name as parameter.

A string naming an NSUML event that should force a refresh of the list model. A null value will cause
all events to trigger a refresh. The best way to identify the event you want to use is to look at the
NSUML source for the container object (MJseCasel npl in our example) for callsto fi rexXXX().
The first argument is the name of the event (in our case ext end). There is no definitive list, but from
the NSUML source, these are all the names of events that are used:

e action

e actionSequence

56

Inside the subsystems

activator
activityGraph
actual Argument
addition
aggregation

dias
annotatedElement
argument
association
associationEnd
associationEndRole
associationRole
attribute
attributeLink
availableContents
availableFeature
availableQualifier
base

baseClass
baseElement
behavior
behavioral Feature
binding

body

bound

calAction
changeahility
changeExpression
child

classifier

57

Inside the subsystems

classifierlnState
classifierRole
classifierRolel
client
clientDependency
collaboration
collaborationl
comment
communicationConnection
communicationLink
componentlnstance
concurrency
condition
connection
constrainedElement
constrainedElement2
constrainingElement
constraint

container

contents

context

createAction
defaultElement
defaultValue
deferrableEvent
deploymentL ocation
discriminator
dispatchAction
doActivity

dynamicArguments

58

Inside the subsystems

dynamicMultiplicity
effect
elementlmport
elementimport2
elementResidence
entry

event

exit

expression

extend

extend2
extendedElement
extender
extenderID
extension
extensionPoint
feature
generalization
guard

icon
implementationL ocation
include

include2

incoming
initiaValue
instance
instantiation
inState

interaction

internal Transition

59

Inside the subsystems

isAbstarct
isAbstract
isActive
isAsynchronous
isConcurent
isDynamic
isinstantiable
isL eaf
isNavigable
isQuery

isRoot
isSpecification
isSynch

kind

link

linkEnd
location
mapping
message
messagel
message2
message3
messaged
method

model Element
model Element2
multiplicity
name
namespace

nodel nstance

60

Inside the subsystems

objectFlowState
occurrence
operation
ordering
outgoing
ownedElement
owner
ownerScope
package
parameter

parent
participant
partition
partitionl
powertype
powertypeRange
predecessor
presentation
qualifiedvaue
qualifier
raisedSignal
receiver
reception
recurrence
referenceState
representedClassifier
representedOperation
requiredTag
resident

residentElement

61

Inside the subsystems

script
sendAction
sender

signal

dot

source
sourceFlow
specialization
specification
State

statel

state?

state3
stateMachine
stereotype
stereotypeConstraint
stimulus
stimulusl
stimulus2
stimulus3
structural Feature
subject
submachine
submachineState
subvertex
supplier
supplierDependency
tag

taggedVaue

target

62

Inside the subsystems

e targetFlow

» targetScope

» templateParameter
» templateParameter2

o templateParameter3

s top

e trangition
e trigger

s type

» useCase
o vaue

* visihility
* when

This list model should then be provided with a number of methods. The following are mandatory, since
they are declared abstract in the parent.

protected void buil dvod-
el Li st ()

prot ected bool ean isVal -

i dEl e-
nment (Obj ect / *MBase*/ 0)

. Warning

(Re)Builds the list of elements. Called from targetChanged every
time the target of the proppanel is changed.

Returns true if the given element is valid, i.e. it may be added to
the list of elements. This function is caled for many UML ele-
ments, to determine if it fits in the list. Remark: The indication /
MBase/ is a remainder from the time that ArgoUML included
direct references to the NSUML model all over the code. Now it
isapractical reminder of what we are dealing with.

The following description is old and the property panels have undergone some fundament-
al changes since it was written. It would be good if someone that knows how it works now
could write a description on how it works now.

The following are sometimes provided as an override of the parent, although for many uses the default is

fine.

public void open(int in-
dex)

Perform the action associated with the “open” pop-up menu on
the element at the given index. The default provided in the parent
just navigates to that element.

63

Inside the subsystems

i nt index)

Build a pop-up menu for the list and return whether it should be
displayed. Any actions will be associated with the item at the giv-
en index in the list. This is built using UMLLi st Menul t em
which can record the index, rather than plain JLi st1tem The
default provides open, add, delete, move up and move down, with
add disabled if there are aready as many elements as the upper
bound (if any) for the list, open and delete disabled if there are no
elements and move up and move down disabled if they cannot be
invoked on the given element. The default implementation always
returnstrue.

The following should be declared as needed to support particular pop-up functions.

public void add(int in-
dex)

public void delete(int
i ndex)

public void noveUp(int
i ndex)

public void noveDown(i nt
i ndex)

Perform the actions associated with the “add” pop-up menu on the
element at the given index. There is no default provided, so this
must be given if the “add” operation is supported. The ad-
dAt Uti | () method (see below) may prove helpful.

In this routine you may create a new NSUML entity. There seem
to be three ways to do this, in order of preference 1) use a utility
from the MMt i | class, 2) use the NSUML Factory class to cre-
ate what you want 3) use new on a MXXXI npl class. Whilst 1) is
best, most of the MMt i | routines are not yet general enough.

Be sure to set it up (don't forget e.g namespace etc). Remember
also to change anything that references the newly created entity.

. Warning

The NSUML routines generally set up the “other”
end of arelationship automatically if you set up one
end. If you try to do both (on a NxM relationship)
you will probably end up doing it twice. If you do
encounter this, the rule of thumb is to explicitly set
the ordered end (if you do it the other way round,
NSUML will assume you mean the "other" end to be
at the end of its ordered list).

Perform the actions associated with the “delete” pop-up menu on
the element at the given index. There is no default provided, so
this must be given if the “delete” operation is supported.

Perform the actions associated with the “move up” pop-up menu
on the element at the given index. There is no default provided, so
this must be given if the “move up” operation is supported.

Perform the actions associated with the “move down” pop-up
menu on the element at the given index. There is no default
provided, so this must be given if the “move down” operation is
supported.

The following normally use the default method, but may be declared to override methods in the parent

Inside the subsystems

public void resetSize()

public Object formatEl e-
ment (MModel El enrent el e-
nment)

public void tar-
get Changed()

public void targetReas-
serted()

public void rol eAd-
ded(fi nal MEl ement Event
event)

public void rol eRe-
noved(final MEl enmen-
t Event event)

public void re-
covered(final NEl enen-
t Event pl) ,public void
listRoleltentet(final
MEl enent Event pl) , pub-
publ voi dor dnpagdgat nal
REDEMYROEVERENMPDY |, pub-
odel/ &l @npnbper -

tySet (fi nal MEl ermen-

t Event pl

Called when an external event may have changed the size of the
list. The default just sets a flag, which will ensure recal-
cModel ElementSize (see above) is invoked as needed.

Return an object (invariably a String) that represents an element.
The default provided in the parent defers this to the container,
which in turn defers it to the current profile. This is usualy per-
fectly satisfactory.

Called when the number of elements in the displayed list
(including “none”) may have changed. Default invokes the neces-
sary Swing operations to advise of achangein list size.

Called when the navigation history has been changed (and naviga-
tion buttons may need changing). Not clear why anything is
needed, but default recomputes the list size, and invokes the ne-
cessary Swing operations.

part of the NSUML EventListener interface. Called when an add
event happens, i.e. some NSUML object has been added. The de-
fault provided looks to see if the event is the role name we de-
clared, or we are listening to all events, and if so looks to seeiif it
relates to an element in our list. If so Swing is notified that the
element has been added.

part of the NSUML EventListener interface. Called when a re-
move event happens, i.e. some NSUML object has been removed.
The default provided looks to see if the event is the role name we
declared, or we are listening to all events, and if so looks to seeif
it relates to an element in our list. If so Swing is notified that the
element has been removed.

these are al required as part of the NSUML EventListener inter-
face, which is not well documented. In each case the default im-
plementation recomputes the size, and advises Swing that the en-
tire list has changed. Needs more investigation.

areguest to navigate to the specified object as part of the Naviga-
tionListener interface. The default in the parent just invokes nav-
igateTo() on the container (ultimately PropPanel).

The foIIowFi)ng utility routines are also provided in the parent. They are not normally overridden.

public int getUpper-
Bound()

public void set Upper-
Bound(i nt newBound)
public final String get-
Property()

protected final int get-
Model El enent Si ze()

final Object getTarget()

get any upper bound (-1 isused if there is none).
set the upper bound (-1 is used if thereis none).

returns the NSUML event name being monitored (null if all are
being monitored).

returns the number of elements in the list. Invokes r ecal -
cModel El ement Si ze() (seeabove) if necessary.

returns the NSUML object associated with the container (some
child of Pr opPanel usually) that holds thislist model.

65

5.4.1.2.

5.4.1.3.

Inside the subsystems

Cont ai ner get Cont ai ner ()

public int getSize()

public Object getEle-
ment At (i nt i ndex)

static protected Coll ec-
tion ad-
dAtUtil (Col I ection ol d-
sbht ect poat emvedel El e-
jrewa. ok t Birpt i nt i ndex)
noveUpUti | (Col | ection

ol dCol | ection, int in-
deRrjic protected

java. util.List nove-
DownUti| (Col Il ection ol d-
Col l ection, int index)
static protected

Mvbdel El enent el enent At -

returns the the container (some child of Pr opPanel usualy) that
holds this list model.

returns the size of thelist. Including if there are no elementsin the
model, but the list has a default text when empty.

returns the element at the given index in the list.

helps in writing the “add” function. newltem is added at the spe-
cified index in the given oldCollection.

helps in writing the “move up” function. Swaps the elements at
offsets index and index-1. Not clear why it doesn't return a Col-
lection.

helps in writing the “move down” function. Swaps the elements at
offsets index and index-1. Not clear why it doesn't return a Col-
lection.

helps in writing the get El ement At () . Finds the element at a
specific index. The last argument is ignored!

Uil (Collection collec-
tion, int index, dass

rBayilckdrgatke field

By convention the background of the list is set to the same as the background of the PropPanel and the
foreground to Color.blue.

The list is then added to a JScr ol | Pane. Although ArgoUML has historically not used scrollbars
(JScrol | Pane. VERTI CAL_SCROLLBAR_NEVER and JScrol | -
Pane. HORI ZONTAL_SCROLLBAR_NEVER), it is more helpful to permit at least a vertical scrollbar
where needed (JScrol | Pane. VERTI CAL_SCROLLBAR AS NEEDED and JScroll -
Pane. HORI ZONTAL_SCROLLBAR_AS_NEEDED).

Finally the inherited method addCapt i on() is used to add the label for the field and addFi el d()
to add the associated scroll pane.

The second argument of each of these identifies the index of the caption/field pair in the vertical column
of the grid for this property panel. The third argument identifies the column index. The final argument is
a vertical weighting to expand the field if there is room in the property tab. This is usualy set to the
same non-zero value for all fields and corresponding captions that can have multiple entries, so they ex-

pand equally. If none of the fields should expand, the caption only of the last field in each column
should be given a non-zero value.

Adding Property Tab Tool-bar Buttons

These are added by creating new instances of Pr opPanel But t on (you don't need to assign them to
anything - just creating will do). This has six arguments.

e Thecontainer, i.ethis property pandl (usualy just uset hi s).

* The panel for the buttons. Use but t onPanel which isinherited from Pr opPanel .

e Theicon. Lots of these are already defined in Pr opPanel .

* Theadvisory text for the button. Usel ocal i ze(stri ng) toensureinternational portability.

66

Inside the subsystems

» The name of the method to invoke when this button is used. Some of the standard ones (e.g for nav-
igation) are provided, but you will need to write any specials.

e The name of the method (if any) to invoke to see if this button should be enabled. Use nul | if the
button should always be enabled.

In our example, the extend property panel has a “add extension point” button, with a method newEx-
t ensi onPoi nt that we provide to create a new use case.

5.4.1.4. Support for stereotypes
The PropPanel should override the following (note the spelling of the method name).

protected boolean isAcceptibleBaseMetaC ass(String baseC ass). Returns
t r ue if the given base classis aclass of the target in the Pr opPanel .

Thisis used to determine what stereotypes may be shown for this property panel.

5.4.1.5. Other sorts of fields

Another sort of field that may be useful is the ComboBox. This is useful to allow users to select from a
pre-defined list of alongside a havigation arrow to go to the selected entry.

For example thisis used to provide drop-down lists for the base and extension use cases of an Extend re-
lationship in PropPanel Extend.

The model behind the drop down is created by using UM_ConboBoxModel : UM_CormboBox Mod-
el (contai ner, predicate, event, getter, setter, allowoid, based ass,
useModel).

The container is the Pr opPanel where we are setting up this ComboBox, the predicate is the name of
a public method in that PropPanel that, given a model element, determines if it should be in the drop
down, the event is the NSUML MEl enent Event name we are looking for (see earlier for the list),
get t er isthe name of a public method in the PropPanel that yields the current entry in the combo Box
(of typebased ass), sett er (with asingle argument of type baseC ass) setsthat entry, al | ow
Voi d if t rue will alow an empty entry for the box, baseCl ass is the NSUML meta-class from
which al entries must descend, useMbdel ist r ue to consider all the elementsin the standard profile
model for inclusion (so the Javatypes, standard stereotypes etc.).

For our Pr opPanel Ext end, we provide a predicate routine the call for the “base” field is:

UMLConboBoxModel (this, "isAcceptabl eUseCase", "base", "getBase", "set-
Base", true, MJseCase.cl ass, true);

and we define the methodsi sAccept abl eUseCase, get Base and set Base in Pr opPanel Ex-
tend.

5.4.1.6. How UMLTextField works
Thisinformation is provided by Jaap Branderhorst (September 2002).

UMLText Fi el d implements several kinds of event listeners:

« MMEl enent Li st ener

 Docunent Li st ener

67

Inside the subsystems

* FocuslLi st ener
FurthermoreitisaUM_User | nt er f aceConponent .

Since it is an UMLUser | nt er f aceConponent it must implement t ar get Changed and t ar -
get Reassert ed. Tar get Changed is caled every time the UMLText Fi el d is selected. t ar -
get Reassert ed is of no interest for UMLText Fi el d. It plays a role in keeping history but since
history is not really implemented at the moment in ArgoUML it is of no interest. t ar get Changed
does two things:

* ltcalsthet ar get Changed method of the UMLText Pr operty thisUMLText fi el d is show-
ing.

* Itcalstheupdat e method. Theupdat e method is described further on.

Besides UMLUser | nt er f aceConponent there are severa other interfaces of interest. One of them
isMVEI enent Li st ener.

Every time a Mvbdel El enent ischanged thiswill fire an MEvent to UMLChangeDi spat ch. UM
LChangeDi spat ch will dispatch these events to all containers implementing UMLUser | nt er -
f aceConponent s interested in this event, including UMLText Fi el d. It will also dispatch the event
to al children of an interested container implementing UMLUser | nt er f aceConponent . By this it
is only necessary to register a Pr opPanel which holds an UMLText Fi el d aa UM_ChangeDi s-
pat ch to dispatch the event to the UMLText Fi el d too. Mvel enent Li st ener knows severa
methods of which only oneis of interest to UMLText Fi el ds:

* propertySet

Cdled every time a property in a Mvbdel El enent is set. This method calls updat e too if the
UMLText Pr operty really isaffected.

Furthermore UMLText Fi el d implements Docunent Li st ener . Thisisvery typical for UMLText -

Fi el d. At the moment it is not possible to change the style of the text in the UMLText Fi el d. There-
fore the method changedUpdat e does not have a body. This method is only called when a Docu-

ment Event occurs that changes the style/layout of the text. The methodsi nsert Updat e and r e-

noveUpdat e are respectively called when a character is added to the document UMLText Fi el d con-
tains or removed. Since both methods are called when there is true user input and when the contents of
the document are changed programmatically, the methods distinguish between them. | nser t Updat e
and r enroveUpdat e are both handled via the protected method handl eEvent . Handl eEvent up-
dates the property in UMLText Pr operty if it isreally changed. If the update comes via user input, it
is checked if it isvalid input. If it isnot, aJOpt i onPane is shown with ' a warning and the change is
not committed into the model. If it is not via user input, the input is not checked and the property is set.
If the property is set, the update method is called.

The implementation of FocusLi st ener makes sure that the checking of user input only happens
when focus is lost. Otherwise, it would not be possible to enter ‘intermediate’ values that are not legal.
For instance, say the value class is not legal. Without the implementation of FocusLi st ener, it
would not be possible to enter class diagram since handleEvent would pop-up a warning message box.

The method updat e updates both the actual JText fi el d as the diagram as soon as some property is

set. The updating of the diagram is done by calling the damage method of the figs that represent the
property on the diagram.

5.5. Persistence

68

Inside the subsystems

Purpose - To package and unpackage the persistence data from different subsystems to and from some
storage medium.

The Persistence subsystem islocated in or g. ar gounl . per si st ence.
Currently the storage medium is aflat file (.uml - xml format) or a zipped file (.zargo - zip format)

During save the persistence subsystem requests each subsystem for its persistence data and adds that
datato output it is collating.

During load the persistence subsystem unwraps the persistence data and passes these to the relevant sub-
systems for those subsystems to build themselves.

5.6. Notation

Purpose - To handle generating and editing in different languages of a textual representation which rep-
resents one or more UML modelelements. Such a notation element gets e.g. attached to a diagram figure
or an explorer entry.

The notation subsystem islocated in or g. ar gound . not at i on.

The interface NotationProvider4 is at the center of the subsystem. There is an object implementing the
NotationProvider4 interface per string (i.e. textual model representation) that is shown on the diagram:
e.g. TransitionNotation, StateBodyNotation, Model ElementNameNotation. A state will show the latter
2.

This notation object would keep track of which UML objects it represents, generate and parse and
provide a help text.

This notation object should listen to model changes, instead of the Fig. Putting the latter task into this
Notation class (instead of the Fig) has the advantage that the knowledge to which uml objectsto listen is
centralised where it is needed, and not any more in the Fig.

Figure5.1. Notation subsystem part 1.

69

Inside the subsystems

MotationName

winterfaces

FropertyChangelistener

=

winterfaces |

MotationProviderd

parseltext : String)
taString() : String <]
getFarsingHelpl) : String

put'yaluerString : key, Object : newtfalue)

getaluelString : key)

Listen to model changes. Iﬁ

NodelElementiizme Notation

me : Object

wiredtes ModelElementNametotationime : Object)

Jiy Jiy

| T
|
| StateBod pliotation
1
Transitiorlatation ftate : Object
transition : Object wcreates StateBodyMaotation?) : Object

£

wcredtes TransitionMotationttransition : Object)

i I

TransitionMotationUhL TransitionMotationd ava

Ji

odelElementMameMotationlIhl]

[Ftate BodyMotationUhdl

IFtateBodyMotationd awva

ModelElementt ameMotationdava

These Notation objects are abstract, since they are specialised in classes that implement them for a cer-
tain language, i.e. one per language. So, we will have: TransitionNotationUML, TransitionNotationJava,

.. €tc.

The NotationProviderFactory? is a singleton, since it is the accesspoint for all Figs to access the textual
representation of modelobjects, and since plugin modules can add extra languages.

Figure 5.2. Notation subsystem part 2.

70

Inside the subsystems

wintzrfacen

MotationContext

winterfacex |

getContextMotation) : MotationMame

zetContextMotationinn : NotationName)

ArgoMaotationEventlistener |

5
|
|
|
|

FigHodehodelElement

I

T

FigSimpleState

FigCompositeState

b P Fi)

|
|
- " |
|
|
1

FigEdgehodelElament

I

FigTransition

MotationFrowiderF acton?

asingletons

typeHame : int =1

type Transition : int =2

bypeStateBody ; int = 2

allIFroviders : Collection

getMotationProvidentype : int,context : MotationContexd) : NotationProviderd
addMotationProvidentype :

int,notationMame : MotationMame,provider : MotationFrowiderd)

5.7. Reverse Engineering Subsystem

Purpose: Point where the different languages register that they know how to do reverse engineering and
common reverse engineering functions for all languages.

The Reverse Engineering islocated inor g. ar gouml . um . reveng.

The Reverse Engineering Subsystem is a Control subsystem. See Section 4.5, “View and Control sub-

systems’.

5.8. Code Generation Subsystem

Purpose: Point where the different languages register that they know how to do code generation and
common functions for all languages.

The Code Generationislocated inor g. ar gouni . | anguage.

71

Inside the subsystems

The Code Generation subsystem is a Control subsystem. See Section 4.5, “View and Control subsys-
tems”.

Currently (up until April 2004) very much of this subsystem is located in
org. argounm . unl . gener at or and we have a need to modify the interfaces of the subsystem to
no longer include any NSUML types. This move will be carried out by creating new interfaces in
org. argounl . | anguage and deprecating the old ones.

Thisismy (Linus Tolke) suggested way of how it is going to work:

The different languages or notations supplied with ArgoUML are found in sub-packages of { @link
org.argouml.language} .

Any definition or foundation interfaces are found in the directory or g. ar goum . | anguage. Any
helper classes such as abstract implementation classes are also found in or g. ar goun . | anguage.

At _boot time, each language registers their interfaces in the or g. ar goum . | anguage. Language
register.

» Languagesthat generates a Notation implement the Not at i onGener at or interface.

» Languagesthat edits or parses the Notation implement the Not at i onEdi t or interface.

» Languagesthat generates Code templates implement the CodeGener at or interface.

» Languagesthat reverse engineer Code implement the CodeRever seEngi neer interface.

Full MDA implementations of languagesis not currently discussed. | (Linus April 2004) does not under-
stand how it is supposed to work.

5.9. Java - Code generations and Reverse En-
gineering

5.9.1.

5.9.2.

Purpose - two purposes: to allow the model to be converted into java code and updated either in java or
in the model; to allow some java code to be converted into amodel.

Thejavathings arelocated in or g. ar gournd . | anguage. j ava.

The Java subsystem is a L oadabl e subsystem. See Section 4.6, “L oadable subsystems”.

How do | ...?

Which sources are involved?

The package org.argouml.uml.reveng is supposed to hold those classes that are common to all RE pack-
ages. At the moment this is the Import class which is mainly responsible to recognize directories, get
their content and parse every known source file in them. These are only java files at the moment, but
there might be other languages like C++ in the future. With this concept you could mix severa lan-
guages within a project. The Diagraminterface is used to visualize generated NSUML meta-model ob-
jects then.

The package org.argouml.uml.reveng.java holds the Java specific parts of the current RE code. C++ RE

72

5.9.3.

Inside the subsystems

might go to org.argouml.uml.reveng.cc, or so...

How is the grammar of the target language imple-

mented?

5.9.4.

5.9.5.

It's an Antlr (http://www.antlr.org [http://www.antlr.org]) grammar, based on the Antlr Java parser ex-
ample. The main difference is the missing AST (Abstract Syntax Tree) generation and tree-parser. So
the original example generates an AST (a treelike data structure) and then traverses this tree, while the
ArgoUML code parses the source file and generates NSUML abjects directly from the sources. Thiswas
done to avoid the memory usage of an AST and the frequent GC while parsing many source files.

Which model/diagram elements are generated?

The * context classes hold the current context for a package, class etc. When the required information for
an object is available, the corresponding NSUML object is created and passed to the Diagraminterface
to visudizeit.

Which layout algorithm is used?

The classes in org.argouml.uml.diagram.static_structure.layout.* hold the Class diagram layout code.
No layout for other diagram types yet. It's based on a ranking scheme for classes and interfaces. The
rank of a class/interface depends on the total number of (direct or indirect) super-classes. So if class B
extends A (with rank(A)=0), then rank(B)=1. If C extends B, then rank(C)=2 since it has 2 super-classes
A,B. An implemented interface is treated similar to a extended class. The objects are placed in rows
then, that depend on their rank. rank(0)=1st row. rank(1) =2nd row (below the 1st one) etc. Example:

A R ank=0
B R ank=1
C Rank=2

In the next diagram, alink goesto an object that is not in the row above:

73

http://www.antlr.org

Inside the subsystems

A D Rank=0

Rank=1

C Rank=2

In this case, insert virtual objects which are linked to the actua target and link to them:

A D Rank=0

B V Rank=1

C Rank=2

The objects are sorted within their row then to minimize crossing links between them. Compute the av-

erage value of the vertical positions of all linked objects in the row above. Example: we have 2 ranks, 0
and 1, with 3 classes each:

74

Inside the subsystems

ABC:rank 0

DEF:rank 1

We give the super-classes an index in their rank (assuming that they are already sorted):

A:0,B:1,C:2
D, E, F have the following links (A, B, C could be interfaces, so | alow links to multiple super-classes
here):

D->C

E->AandC

F->AandB

Compute the average value of the indexes:
D=2 (Chasindex 2/ 1link)
E=0+2/2=1(A=0, C=2divide by 2 links)
F=0+1/2=0.5(A=0, B=1, 2 links)

Then sort the subclasses by that value:

F(is0.5), E(is 1), D(is 2)

So the placement is:
ABC
(here are the links, but | can hardly paint them as ASClIs)
FED

5.10. Other languages

Each other language supported by ArgoUML has its own subsystem. They are each different in level of
support and implementation language.

Currently C++ has no reverse engineering but only code generation (and a very simple one at that). Java
class files has only reverse engineering.

75

Inside the subsystems

lawva C++ Hawva classfilas
I e 1
1 - |
r | L I
! - I
|
! =7 I
! _,-"'- | |
! - I |
- ' Ny
hiodel | Code Ganeration | Rawvarse Engineeringl

5.11. The GUI

Purpose - Provide an infrastructure with menus, tabs and panes available for the other subsystems to fill
with actions and contents.

This subsystem has no knowledge of UML, Critics, Diagrams, or Model.
The GUI Framework islocated inor g. ar goumn . ??7.
Thisisimplemented directly on top of Swing and Java2.

The GUI framework provides the following options

* The menu with actions
* Thetool-bar with actions
» The Explorer (formerly called Navigator)

Located in or g. argounl . ui . expl or er. Contains the tree structure with configurable per-
spectives.

e Tabbed pane
Could contain several different panes.
» The TargetManager
Locatedinor g. argoun . ui . t ar get manager .
Thanks to the architecture of ArgoUML of Modelelements and Figs, one rule has been decided upon

(by mvw@tigris.org): The list of targets shall not contain any Fig that has an owner. Instead, the
owner is enlisted.

76

Inside the subsystems

5.12. Application

Purpose - to provide the entry point when starting ArgoUML. Responsibility to start the ball rolling.
The Applicationislocated in or g. ar goun . appl i cati on.

Theentry pointiscalled or g. ar goun . appl i cati on. Mai n.

5.12.1. What is loaded/initialized?

It al begins in orgargouml.application.Main: st up man application frame
(org.argouml.ui.ProjectBrowser), the project (org.argouml.kernel .Project), numerous classes, and finally
as abackground thread: cognitive support (org.argouml.cognitive.Designer) and some more classes.

The ProjectBrowser initializes the menu, tool-bar, status bar and the four main areas: navigation pane
(org.argouml.ui.NavigatorPane), editor pane (org.argouml.ui.MultiEditorPane), to do pane
(org.argouml.cognitive.ui.ToDoPane), and details pane (org.argouml.ui.DetailsPane). Then, the actual
project is set to either aread from file project (see ArgoParser.SINGLETON.readProject(URL) and Ar-
goParser.SINGLETON.getProject() in org.argouml.xml.argo.ArgoParser) or a newly generated project
(see Project.makeEmptyProject()).

5.12.2. Details pane
Currently (May 2003) the Details pane contains several tabs. Property Panels (See Section 5.4,
“Property panels’, Critics explanations and wizards (belonging to the Critics subsystem) (See Sec-

tion 5.2, “Critics and other cognitive tools’), Documentation, Style, Source, Constraints (an OCL con-
straints of the current object) (See Section 5.20, “OCL"), and Tagged values.

Warning

It isnot clear in what subsystem Documentation, Style, Source, and Tagged values belong.

5.12.2.1. How do | ...?

e ..add atabinthe Details Panel?

Create your TabXXX classin or g. ar gounl . um . ui by copying from another TabYYY. j ava
(e.g. TabSr c, TabSt yl e). Then register your TabXXXin or g/ ar gouml / ar go. i ni by adding
aline giving the compass point to place the tab. Like -

sout h: TabXXX

e ..remove atab from the Details Panel ?

Remove the line for the tab from or g/ ar goum / ar go. i ni .

5.13. Help System

Purpose - to provide the menu actions that start the help and other documentation. To provide infrastruc-
ture that makes context sensitive help possible.

77

5.14.

Inside the subsystems

The Help System is not yet implemented.
The Help System will be located in or g. ar goun . hel p.
The Help System isaModel subsystem. See Section 4.4, “Model subsystems”.

Javahelp or some other help function will probably be used.

Internationalization

Purpose - to provide the infrastructure that the other subsystems can use to trandate strings; to provide
the infrastructure that makes it possible to plug in new languages; to administer the default language; to
administer all supported languages.

When ArgoUML starts it starts with the language given by the first decisive language information of

1. Command line argument
The prepared Java Web Start alternatives also uses this to override everything else.
2. Theusers saved configuration
3. Thedefault locale for the users' computer
4. ArgoUML default language (Enlish U.S.)

Thisis done independently of if ArgoUML has that language prepared or not.

Example5.1. Starting with nonexisting language.

If ArgoUML is started with Swahili on the command line (that doesn't exist), while the user has French
(that does exist) configured, ArgoUML will work in Swahili and all languages will show up in English
U.S. i.e. the default language because Swahili doesn't exist.

The Internationalization is located in or g. ar gounl . i 18n in the class path. In the checked out copy
of ArgoUML it is located partly in ar goum / src_new or g/ ar goum /i 18n - functionality, and
non-localized default language (US English), and partly in argouni -1 anguage/
src/org/argoum /i 18n - dl files for a specific language (one new tigris project for each lan-
guage).

For the time being, some languages are aso placed in argoum /src/i 18n/1 anguage/
src/ org/ argoum

The Internationalization is an Infrastructure subsystem. See Section 4.3, “Low-level subsystems”.

In ArgoUML internationalization (sometimes called i18n) is done using the property files that are loaded
into PropertyResourceBundles.

5.14.1. Organizing translators

The problems with internationalization are not so much the technical problems as to how it works but
more so the problems are with getting, keeping and coordinating the correct competences to do the job.
This comes from the fact that by necessity the different persons working with internationalization have
different native languages and that complicates the communications.

78

Inside the subsystems

To handle this problem for GNU applications there is a community set up around “ gettext” with one lan-
guage team per language working with all “gettext” applications. There are also tools to help the trans-
lator do his job delivered with “gettext” that are the same for al the applications. In each of these lan-
guage teams discussions are held that ensure a consistent use of words over all these applications.

Itisfor me (Linus Tolke, May 2002) unclear if and how such a community exists for Open Source Java
tools and ArgoUML cannot simply benefit from the “gettext” communities since we don't use “ gettext”
and cannot use the same tools.

To get things done, we organize our own Language Teams for ArgoUML. Each language team is actu-
aly just one or several persons that know that language and are eager to work with transating
ArgoUML.

The language team has the following responsibilities:

1. Constitute the foundation of the ArgopUML community for that language.
2. Tranlate al localized strings and resources.

Thisis a constant work with keeping up with the changes that will be made to the ArgoUML code
and ArgoUML modules since ArgoUML is under fast devel opment.

3. Theterminology used shall be correct.
This requires work in keeping up with the current literature in the domain of ArgoUML.

4. Help with the improvements on ArgoUML by pin-pointing where ArgoUML needs to be modified
to allow for localization.

As ArgoUML is originally built without localization there may still have places in the GUI that is
not localizable just by modifying the resource bundles. Each such place is a Defect and shall be
corrected.

5. Seethat the used libraries also provide their part in that language.

Thisis mostly GEF since GEF is central both when it comes to the fact that it has localized strings
of its own but also because it handles parts of the localization.

This means discussing with the teams developing the underlying package as to how best to provide

the localization for those parts. Either by providing localization for that team to include in the pack-
age or by having ArgoUML overriding that package in that respect.

5.14.2. Ambitions for localization

An ArgoUML subproject is created for each Language Team.

The subproject has the following that is used in building a community:

* A webste
Ideally the site should match the main ArgoUML site, page by page, with a footer on every page
with flags of all the languages that that specific page exist in so that it is easy to travel between lan-
guages. Missing pages should be linked to the main ArgoUML counterpart.

Alasthereis no tool support on Tigristo help in this.

79

Inside the subsystems

Mailing lists

The users@argouml-l anguage code.tigris.org should be for user and dev@argouml-l anguage
code.tigris.org for persons discussing the building of the site or the translation. Discussions on both
lists should be carried out in the actual language.

5.14.3. How do | ...?

...fix an incorrect or missing translation?

Thisisthe responsibility of the language team.

If you are amember of the language team, commit the new trandlation.

If you are not, send your corrections to the correct team by mail or enter an issue in issuezilla. Each
language team might want to handle this differently. Whatever way, it should is stated on the web

site for that team. The language team members are the ones with the Developer role in the language
project.

If the language team does not do its work quickly enough (or well enough in your opinion), please
volunteer to help them out by joining the team.

If the language team does not respond, contact the project leader of the ArgoUML project.

For historic reasons there are currently (June 2005) teams without projects of their own. Projects will
be created when something is to be done for these languages.

...verify that all translations are up to date?

There is a simple tool you can use that is developed in the argouml-gen project. Currently (June
2005) thistool isrun regularly and aweb page with the result published in the argouml-stats project.

...start anew Language Team?

Contact the project leader of the ArgoUML project to discuss this. He will create the team and the
project and make you the first member of the team and project once he is convinced that you have
understood the responsibilities.

The Language Teams are listed on the web page of language teams on the Tigris site. The project are
argouml subprojects so they are listed at the bottom of the argouml web page.

..find the languages internationalization code for the language your instance of ArgoUML is at-
tempting to run with: en, es, en_GB,...

The one you are currently using is shown in the Versions information in the about box. Help Menu

=> About ArgoUML Menuitem => Version tab just after the Operating System information. Search
for the text looking like this:

Language: sh
Country: KR

This example means that you have your computer set to Swahili as spoken in Korea (I think). Notice
that the Language: and Count ry: arelocalized and could appear in your language.

...start the trand ation work?

80

Inside the subsystems

Thisisonly applicable for members of the language team.

Look at thefilesinor g/ ar gour /i 18n, under ar gound / sr c_new (the argouml project).
Trandate al the valuesin each of these files.

Thisis a lot of extremely qualified work including searching well-known literature on UML and
Software Engineering in order to get the correct terms for the domain. Discuss with other UML and
Software Engineering professionals with the same native language to get it right.

Create the files with the trandations and store them in argouni -1 anguage code/
src/org/argoum /i 18n. They will have names likee action_| anguage
code. properties, button_|l anguage code.properties, checkbox_ | anguage
code. properties,conbobox_| anguage code. properties,..

When this is done the first iteration of the Tool trandation is completed. The work will probably be
more maintenance-like from here on.

...join an existing Language Team

Discuss with the Language Team in question by mailing the members. They will hopefully have
work prepared for you and greet you with open arms.

...add or modify code with localized things?

This is only applicable for developers working with the ArgoUML Java source or some argouml
module.

1. Everywhere the user would see a string in the GUI you should localize a key.
This means that instead of writing a string you write a call to a localizer method with a "key"
("label" or "tag") as argument and the localizer method finds the resolution of the "key" isin
one of the property files. Y ou select one of the files for you key and name the key accordingly.

The key isa String. The key has a specia syntax like this:

wor d1. wor d2. wor d3
where word1 is the same as the first part of the filename that the key resides in. Example: The
key "action.about-argouml” resides in the files acti on. properties and acti on_| an-
guage code. properti es.

You will have to cal the class or g. argouni . i 18n. Transl| at or to convert them to
wherever they are used.

Thisis how areal example would look like:

i mport org.argoun .i18n. Transl ator;
O ostri ng |l ocalized = Transl ator.|ocalize(key);

2. Add your "key" and resolution in English (U.S) in the non-localized properties file in
argoum / src_new or g/ argoum /i 18n and test that the GUI looks good for the default
language.

Which property file ArgopUML will eventually use depends on the localization settings of the

81

Inside the subsystems

running ArgoUML instance. While developing you should use en US or some language that
does not have a translation so that you can work with the default language.

3. Contact al language-teams so that they can update their files.

Currently (November 2003) there is a great confusion as to where we stand on the different
tranglations. For this reason we can't say if any language team is up to date with the changes
and served by such a contact.

4. If you have strings that are sentences where you have dynamic values like a file name, a class
name, or some property to enter at a certain place, remember that all languages would not write
it exactly like that. Use MessageFor nmat to build every such sentence! There is a conveni-
ence function for thisin Tr ans| at or called nessageFor mat .

Notice that if you somewhere change the meaning of a specific localized string it would be a good
ideato use anew "key" for the new meaning. Thiswill make it easier for the trandation team to spot
the modification.

There allegedly are tools in the java world to spot this kind of changes. Until we have the tools and
processes in place to handle them it is better to rely on this simpler mechanism to guarantee correct-
ness.

Notice aso that you shouldn't localize log entries, comments, exception hames, names of environ-
ment variables, and tags and tokens used in save files. This is because the development project of
ArgoUML is a one-language community (en_US) and the users of ArgoUML would want to be able
to run an ArgoUML localized differently with otherwise the exact same settings, loading and saving

the samefiles, ... Also a user, changing the language, should not have his files or configuration cor-
rupted by this change.

5.15. Logging

Purpose - to provide an api for debug log and trace messages.

The purpose of debug log and trace messages is: To provide a mechanism that allows the developer to
enable output of minor events focused on a specific problem area and to follow what is going on inside
ArgoUML.

TheLogging islocated in or g. ar gouni . ?2??

The Logging is aLayer 0 subsystem.

Logging is currently implemented using log4j.

ArgoUML uses the standard log4j [http://jakarta.apache.org/logdj/] logging facility. The following sec-

tions deal with the current implementation in ArgoUML. By default, logging is turned off and only the
version information of all used libraries are shown on the console.

5.15.1. What to Log in ArgoUML

Logging entriesin log4j belong to exactly one level.

* The FATAL level designates very severe error events that will presumably lead the application to
abort. Everything known about the reasons for the abortion of the application shall be logged.

82

http://jakarta.apache.org/log4j/

Inside the subsystems

» The ERROR level designates error events that might still allow the application to continue running.
Everything known about the reasons for this error condition shall be logged.

e The WARN level designates potentialy harmful situations. Thisis if CG can't find al the informa-
tion required and has to make something up.

* The INFO level designates informational messages that highlight the progress of the application at
coarse-grained level. This typically involves creating modules, subsystems, and singletons, loading
and saving of files, imported files, opening and closing files.

* The DEBUG Level designates fine-grained informational events that are most useful to debug an ap-
plication. This could be everything happening within the application.

Thislist is ordered according to the priority of these logging entriesi.e. if logging on level WARN isen-

abled for a particular class/package, all logging entries that belong to the above levels ERROR and
FATAL arelogged as well.

For performance reasons, it is advised to do a check before frequently passed DEBUG and INFO logdj

messages (see Example 5.3, “Improving on speed/performance”). The purpose of thistest isto avoid the
creation of the argument.

5.15.2. How to Create Log Entries...

Y ou should not use Syst em out . pri ntl ninArgoUML Java Code. The only exception of thisrule
isfor output in non-GUI mode like to print the usage message in Mai n. j ava.

To make log entries from within your own classes, you just need to follow the three steps below:

1. Import the org.apache.logdj.Logger class
2. Getalogger

3. Start Logging...

Example5.2. For log4j version 1.2.x

i mport org. apache. | og4j . Logger;
bhbl ic class theCd ass {

private static final Logger LOG =
Logger . get Logger (t hed ass. cl ass);

public void anExanpl e() {
LCOG debug("This is a debug nessage.");
LOG info("This is a info nmessage.");
LOG warn("This is a warning.");
LOG error("This is an error.");
LOG fatal ("This is fatal. The program stops now working...");

83

Inside the subsystems

Notice that we in the ArgoUML project have decided to have all loggers private static final with a static
initializer. The reason for making them private is that this reduces the coupling between classesi.e. there
is no risk that one class uses some other class Logger to do logging. The reason for making them static
isthat our classes are more or less al either lightweight, like a representation of an object in the model,
or a singleton. For the lightweight classes, having a reference to a logger object per object is a burden
and for the singleton objects it doesn't care if the logger is static or not. The reason for making this final
is that it shall never be modified by the class. The reason for having a static initializer is that then all
classes can do this in the same way and we don't ever risk to forgot to create the Logger.

For performance reasons, a check before the actual logging statement saves the overhead of all the con-
catenations, data conversions and temporary objects that would be created otherwise. Even if logging is
turned off for DEBUG and/or INFO level.

Example 5.3. Improving on speed/performance

if (LOG isDebugEnabled()) {
LOG debug("Entry nunber: " + i + " is " + entry[i]);

}
if (LOG islnfoEnabled()) {

LOG info("Entry nunber: " +i + " is " + entry[i]);
}

. Warning

Since this has a big impact also on the readability, only use it whereit is really needed (like
places passed several times per second or hundreds of times for every key the user
presses).

For more information go to the log4j homepage at http://jakarta.apache.org/logd
[http://jakarta.apache.org/logdj/].

5.15.2.1. Reasoning around the performance issues

Most of the log statements passed in ArgoUML are passed with logging turned off. This means that the
only thing log4j should do is to determine that logging is off and return. Log4j has a really quick al-
gorithm to determineif logging is on for a certain level so that is not a problem.

The problem isinstead explained by noticing the following log statement:

int i;

LOG debug("Entry nunmber: " + i + " is " + entry[i]);

It is quite innocent looking isn't it? Well that is because the java compiler is very helpful when it comes
to handling strings and will convert it to the equivalent of:

StringBuffer sb = new StringBuffer();
sb. append("Entry nunber: ");

sb. append(i);

sb. append(" is ");

http://jakarta.apache.org/log4j/

Inside the subsystems

sb. append(entry[i].toString());
LOG debug(sb.toString());

If the entry[i] is some object with a lot of calculations when toString() is called and the logging state-
ment is passed often some action needs to be taken. If the toString() methods are simple you are till
stuck with the overhead of creating a StringBuffer (and a String from the
sh.toString()-statement.

5.15.3. How to Enable Logging...
log4j uses the command line parameter - DI og4j . confi gurati on = URL to configure itself

where URL pointsto the location of your log4j configuration file.

Example5.4. VariousURLSs

org/ argoum /resource/fil enane. | cf

1

http://1 ocal host/shared/ argoun /fil enane. | cf
a

file://homel/user nag/ filenane. | cf

Reference to a configuration file filename.lcf on aremote server/localhost.

Reference to a configuration file filename.lcf within argouml jar.
Reference to a configuration file filename.lcf on your localmachine.

5.15.3.1. ...when running ArgoUML from the command line

There are currently two possibilities of running ArgoUML from the command line:

1. RunArgoUML usingar goum . j ar
2. Run ArgoUML using the ant script
In the first case, the configuration file is specified directly on the command line, whereas in the latter

case this parameter is specified in the bui |l d. xm (which in that case needs to be modified).
ArgoUML isthen started as usual with ./build run.

Example 5.5. Command Linefor argouml.jar

[local host:~] billy%java -D og4j.configuration=URL -jar argoum.jar

85

Inside the subsystems

Example 5.6. M odification of build.xml

<! - - oo
<l-- Run ArgoUML from conpil ed sources -->
<' - - - - - - - - - - ... - >
<target name="run" depends="conpile">

<echo nessage="--- Executing ${Name} ---"/>

<l-- Uncoment the sysproperty and change the value if you want -->

<java cl assnanme="org. argouni . application. Mai n"

fork="yes"

cl asspat h="${bui | d. dest}; ${cl asspat h}">
< sysproperty key="log4j.configuration"
val ue="org/ argoum /resource/fil enane. | cf"></sysproperty>
</java>
</target>

5.15.3.2. ...when running ArgoUML from WebStart

To view the console output, the WebStart user has to set Enabl e Java Consol e in the Java Web-
Start preferences. In the same dialog, there is also an option to save the Console Output to afile.

As you cannot provide any userspecific parameters to a WebStart Application from within WebStart, it
is currently not possible to choose logdj configuration when running ArgoUML from Java Web Start.

5.15.3.3. ...when running ArgoUML from NetBeans

At the time of writing this paragraph, it is not possible to set the logging configuration file on a per
project basis in NetBeans. Instead, the Global Options of [Debbuging and Execution/Execution Types/
External Execution/External Process] need to be changed.

Example5.7. External Execution Property (Arguments)

-cp {filesystens}{:}{classpath}{:}{library} -Di og4j.configurati on=URL
{cl assnane} {argunents}

5.15.4. How to Customize Logging...

There are some sample configuration files provided in or g. ar gournd . r esour ce. Modify these ac-
cording to your needs. Or alternatively, you can try configLog4j [http://www.japhy.de/configLog4j] to
assist yourself in creating alogdj configuration file.

5.15.5. References

» Thelogdj project homepage at http://jakarta.apache.org/logdj [http://jakarta.apache.org/logd/]
* The configlog4j homepage at http://www.japhy.de/configLog4j [http://www.japhy.de/configL og4j/]

86

http://www.japhy.de/configLog4j
http://jakarta.apache.org/log4j/
http://www.japhy.de/configLog4j/

5.16.

5.17.

5.18.

Inside the subsystems

JRE with utils

Purpose - to provide the infrastructure to run everything.

The JRE is an infrastructure subsystem. See Section 4.4, “Model subsystems”. It is not distributed with
ArgoUML but considered to be a precondition in the same respect as the user's host.

ThisisaJava3 JRE so swing and awt can be used together with reflection.

To do items

Purpose - To keep track of the To do items. Items are generated and removed automatically by the crit-
ics. They could also be created by other means.

The Todoitemsarelocatedinor g. ar goum . ?

The To doitemsisaModel subsystem. See Section 4.4, “Model subsystems”.

Explorer

Purpose - to provide tree views of the model elements, diagrams and other objects. Note: the Explorer
used to be called the Navigator.

The Explorer islocated in or g. ar goumni . ui . expl or er and sub-packages.

The Explorer isaLayer 2 subsystem. See Section 4.5, “View and Control subsystems”.

5.18.1. Requirements

The Explorer must react to user and application events.
User eventsinclude

* R1: selection of anode, which must notify the other views to make the same selection.

e R2: right click on anode, which brings up a pop-up menu.

» R3: selection of another perspective in the Combo box, which must change the explorer to that per-
spective. A perspective provides a different view of the model that will focus on one or other part of
the model.

* R4: node expansion and collapse.

* R5: Itis possible to drag name-space nodes on to other name-space nodes. Dropping a name-space
node onto another, will, if the destination name-space is avalid one, update the explorer and model.

» R6: sorting of nodes with a particular Ordering. [an ordering is a comparator that orders child nodes

in the explorer, e.g. by name and/or type].

R7: copy diagram to clipboard functionality for windows/java 1.4 users.

R8: tool-tip showing node name and type.

R9: standard multiple discontinuous selection with mouse and keyboard.

R10: the user can configure the perspectives using a dialog. Perspectives can be added, deleted, re-

named, reordered and duplicated. Perspective rules can be added and removed from a perspective.

The changes are saved to the user properties. If there are user perspectives when ArgoUML starts, it

loads these, otherwise it loads a default set of perspectives.

Application eventsinclude

* R11: change in selection in another view, any relevant rows to be highlighted.
e R12: the UML model changes, the tree must update to reflect additions/del etions and name changes

87

Inside the subsystems

in the model.
» R13: change of project, the tree must update. the root node should be expanded with the default dia-
gram selected.

5.18.2. Public APIs and SPIs

The Explorer Subsystem provides/will provide the following APIs:

API1: Addition/ Removal of a Perspective from the PerspectiveManager. Status: implemented
API2: Addition / Removal of a Perspective Rule from a Perspective. Status: implemented

API3: Selection of the Perspective to be displayed by the Explorer. Status: not implemented

API4: Selection of Ordering for Explorer nodes. [an Ordering is a comparator that orders child nodes
in the Explorer] Status: not implemented

The Explorer Subsystem provides/will provide the following SPIs:

e SPI1: Configurable Node pop-up menu. Status. not implemented

e SPI2: New PerspectiveRules can be defined and registered with the 'library' of available rules.
Status: not implemented

» SPI3: New Orderings can be defined and registered with the available orderings. [an ordering is a
comparator that orders child nodesin the explorer] Status: not implemented

The APIs collectively represent the Explorer subsystem facade and the SPIs represent plug-ins.

5.18.3. Details of the Explorer Implementation

The Explorer is currently shown in the Explorer Pane (or g. ar goun . ui . Navi gat or Pane) - the
upper left hand pane of ArgoUML.

Except for the Explorer Pane, The Explorer is located in org.argouml.ui.explorer.*. The explorer has
been refactored since version 0.15.2 so that it has a dlightly more standard Java Swing implementation.

The explorer perspectives provide the different views of the project. They are implemented by sets of
PerspectiveRules that get the child nodes for any parent nodein the tree.

Intertf:
PropertyChangeSupport) w=interaces= DefaulthutableTreeModel]
PropertyChangelistene 0
1
1
: ==Interfaces=:= <]"|Exp|0rerTreeModeI DefaulthutableTreeNode)
|ExpIorerNSUMLE\tentAdaptor{ |Exp|0rerE\tentAdaptor1 ; TreeModellUMLEventListene 0

= =Interfaces=x| ==Interfaces =|

Comparable Comparator

A a

UmitodelEventPump)

ExplorerTreeNode) 1

HameQrder

The Explorer has 3 main subcomponents; a customized JTree, a customized TreeModel and an interface
for generating child nodes in the tree which forms the tree Perspective.

1. The JTree (org.argouml.ui.explorer.ExplorerTree) has been customized to maintain consistent se-
lection state with the other model views. It provides a pop up menu (ExplorerPopup) for perform-

88

Inside the subsystems

ing actions on specific model elements. There is specific functionality in DnDEXxplorerTree for
Drag and drop, and in ExportExplorer for copy diagram to clipboard.

2. The TreeMode is a customized DefaultTreeModel that listens to changes in the UML model. The
JTree builds the tree model as the user expands nodes, this minimizes the size of the model to those
part that the user is interested in. The TreeModel contains custom DefaultMutableTreeNodes, Ex-
plorerTreeNodes, that maintain their own order on child nodes; this will typically be an alphabetic-
al order on the model element names. However, it could be enhanced to include more powerful or-
derslike total subtree size.

3. The model uses the third part of the Explorer design, PerspectiveRules, to add child nodes to the
leaves of the tree. The structure of the tree is wholly dependent on the collection of PerspectiveR-
ules that together provide a specialized view of the UML model. This is very flexible and extens-
ible. The org.argouml.ui.explorer.rules package contains a default set of PerspectiveRules.

Each node is displayed with a name and an Icon, representing the type of node it isin the UML model.
This is done using the or g. ar goum . um . ui . UMLTr eeRender er (for the Icon), and the text is
produced in the convert Val ueToText (...) method in
org. argoun . ui . expl orer. Expl orer Tree.

5.18.4. How do | ...?

» ...add another perspective?

e The perspectives can be configured using the
org. argoum . ui . expl orer. Perspecti veConfi gurat or by the User. The changes
to the pre-defined built-in defaults are stored inthe ar go. user . properti es file.

e |If you want to do this as part of an extension to ArgoUML then you should use (see above) APIs
1,2 and 3, and SPI 2. The functions needed are present in the Per spect i veManager .

e ...improve the PopUp menu?

There is no way of doing this currently without modifying the core of ArgoUML. You could use
SPI1 when it gets implemented.

» ...extend the Explorer in other ways?
The best way is to use the above APIS/SPIs; if they are not implemented then it would be best to im-
plement them and feedback your improvements to the ArgoUML project so that your code works on
arecognized public API that will be maintained in the future.

e ...add new rulesfor new model elements?
Y ou should create a GoRule/PerspectiveRulein

org/argouml/ui/explorer/rules

. There are plenty of examplesto look at. The important things to get right is of course that:

e you return the right children

« return the objects that the TreeModel must listen to to know when to update the node (and the list
of immediate children) After that you must register your GoRule in org/
argouml/ui/explorer/PerspectiveM anager

89

Inside the subsystems

« addittothelistinloadRules()

e perhaps add it to some of the default perspectives in oldLoadDefaultPerspectives(), | guess And
then | think it should just be a matter of recompiling and possibly switching to the perspective
you added your rule to.

o ..tell the explorer to refresh?

You are not supposed to. The TreeMode is supposed to listen to events and refresh affected parts.
And thisis where the lack of eventsfor adding diagrams creates a problem.

Obviously it would be possible to add an operation somewhere to revalidate the expanded parts of
the Explorer, but I'm not aware of the existence of such an operation today.

» ...navigate programmatically to a certain explorer element so that its path is exploded?
In general you can't. The Explorer tree is lazy in that it only explores the parts of the tree that the
user has opened. And since the GoRules are general navigating to them would require a complete
tree search. Which is also complicated by the fact that the answer is not unique and there can be
branches with infinite depth.
In redlity it would be possible to create an algorithm to search out one occurrence of an element
(since the model only contains finitely many elements and | assume that no-one will add go rules

that add branches of infinite length that does not infinitely often contain elements from the model),
but I don't think anyone has don't it. Obviously finding all occurrences cannot be done.

5.19. Module loader

Purpose - to provide the mechanisms to load (and unload) the auxiliary modules.
The Module loader islocated in or g. ar goumn . nodul el oader .

An old module loader is located in or g. argoun . appl i cati on. nodul es. Modul eLoader
with interfaces (Pluggable) in or g. ar gound . appl i cat i on. api . Eventualy thiswill be removed.

It is the modules responsibility to connect and register to the subsystem or subsystems it is going to
work with using that subsystem’'s API, Facade, or Plug-in interface.

For details on how to build a module see Section 6.2, “Modules and Plugins’.

5.19.1. What the ModuleLoader does

The ModuleLoader is looking for module jars. It actually scans through al jars available in the ext dir-
ectory. See Edit Settings Environment tab. If you turn on logging on the debug level while running
ArgoUML you should be able to see what jar filesit finds and what it does with them.

A module jar contains the classes, resources and a manifest file. The manifest file points out the class to

be loaded. Also notice that the Specification-Title and Vendor must be specified correctly for this to
work.

5.19.2. Design of the new Module Loader

The plan is to implement this new Module Loader, then have them both working side by side for several
releases (two stable releases), and if we all are happy with it, then remove the old module loader.

90

Inside the subsystems

Design:

We use a Loadable Proxy Pattern(?) for the modules.

Each module can be enabled and disabled individually. Dependencies between modules is allowed
athough not yet handled gracefully.

Each module is required to have one (1) class that implements Mbdul el nt er f ace. That class
(and al other classes that congtitute the module) needs to be made available for some class loader,
either by including it in the classpath or by letting the module loader hunt for it.

The modules are allowed to use all the APIs available from all the subsystems within ArgoUML and
from other modules.

Thisisabig improvement over the old module loader in that:

* We usethe same APIsfor the modules that we use within ArgoUML meaning that we implement
at document it only once. This replaces the Pluggable class at every point where ArgoUML can
be augmented.

« We can have the module have different classes to register at different parts of ArgoUML.

* We can have dynamic registrations that the module add and remove over time depending on
some criteriathat the module decides.

« We don't need to search through all modules at every possible point where ArgoUML can be
augmented.

Just as in the old solution, whenever a module needs to do something to ArgoUML, there needs to be

implemented an API, possibly with registration/deregistration and callbacks.

All modules that can be found are examined at startup. They can be enabled and disabled individu-
ally from a specia available modules window but have a default state that applies if the user hasn't
taken action. Currently the default state is"enabled"”.

Dependency between modules!

If a module cannot be enabled because some other module needs to be enabled first or because some
part of ArgoUML needsto beinitialized first thisis a problem. This is because the initial implement-
ation is such that we have no register of dependencies.

The solution suggested is that the module loader persists in it's attempts to enable a module so that
the order among the modules is not important. For this to work the modules needs to signal when
they fail. Thisis done by returning false or throwing a Exception from the modul e enabling method.

The module loader also provides an API that the well-behaving modules can use to test if the mod-
ules they depend on are enabled. The less well-behaving module can just throw an exception when
they fail to enable themselves properly.

If amodule cannot be disabled, because some other module depends on it then thisis signaled by re-
turning false from the disabling method.

Where modules are |oaded from?

The modules are loaded from the same places asin the old module loader. They can beinternally i.e.
availablein the core jar file of ArgoUML, from the ext directory, or if running from JavaWebStart,
they can be downloaded from the site.

To reduce the complexity of the downloads, let's use it in the simplest possible way: organize each

91

Inside the subsystems

module in a package and a jar file, have the jnlp-file list that jar file as a part and a package entry
listing the classes, have a file listing optional classes and a GUI that alows the user to download
them. Once aclassis selected in the GUI it is loaded and, the JavawWebStart class loader will guaran-
teethat it isavailable.

» The scope of the modules.

Modules are always enabled and disabled on a per-application (per jvm) basis and not on a per-
project or per-frame basis.

5.20. OCL

Purpose - To alow for editing of stringsin the OCL language.
The OCL islocatedinor g. argoum . ocl .
The OCL isaLayer 3 subsystem. See Section 4.6, “Loadable subsystems”.

The OCL editor GUI interfaceisor g. ar gourd . unl . ui . TabConst r ai nt s (shown in the bottom
right hand panel - details panel).

org. argoum . ocl . ArgoFacade adapts the tudresden.ocl.gui.OCLEditor for
ArgoUML. There are some other helper classes in or g. ar goum . ocl , with names beginning with
OCL but they are used for other purposes. Historically GEF uses OCL as akind of template language to
convert the UML diagrams to pgml(and back again), it doesn't have anything to do with OCL constraints
in your UML model.

Ar goFacade isreused by Gener at or Java and TabConst r ai nt s.
Currently this subsystem is more or less only Dresden OCL Toolkit and adaptation.
Because of a problem with the interpretation of the UML specification and the OCL specification, the

implementation of constraints in ArgoUML is only possible for Classes, Interfaces and Features
(Attributes and Operations). See Issue 1805 [http://argouml.tigris.org/issues/show_bug.cgi71d=1805].

92

http://argouml.tigris.org/issues/show_bug.cgi?id=1805

Chapter 6. Extending ArgoUML

This section explains some general concepts which come in handy, when developing additions to
ArgoUML.

. Warning

There are two module loading mechanisms, "the old one", and "the new one". Thisis so
because we have made a change of the design used for thisin order to simplify the writing
of modules.

Eventually "the old module loader” will be removed so for all new additions, the new mod-
ule loader shall be used.

6.1. How do | ...?

» ...get the according NS-UML element for agiven Fi gXXX class?

Each Fi gXXX implements the method get Owner () which returns the appropriate owner element
which is responsible for this Fig element.

* ...get the according Fig element for agiven Mvbdel El enent ?

for this one needs to iterate through al fig elements and invoke get Oaner . Compare the result with
the given Mvbdel El enent. Beware that there might be more than one Fig Element per
Mvbdel El enent .

6.2. Modules and Pluglins

The ArgoUML tool provides a basis for UML design and potentially an executable architecture environ-
ment for more specialized applications. Thisis solved by a clear interfaces between the ArgoUML core
and the extensions. Extensions are called modules.

6.2.1. Differences between modules and plugins

- Note

This description is only relevant for the old moduleloader since the plugins concept is not
used in the new one.

In the old modul el oader implementation the classes within the modules that attach to ArgoUML core are
called plugins. In the new modul el oader implementation they don't have any special name.

« Modules

A moduleis acollection of classes and resource files that can be enabled and disabled in ArgoUML.
Currently thisis decided by the modules' availability when ArgoUML starts but in the future it could

93

Extending ArgoUML

be made possible to enable modules from within arunning ArgoUML.

This module system is the extension capability to the ArgoUML tool. It will give developers of
ArgoUML and developers of applications running within the ArgoUML architecture the ability to
add additional functionality to the ArgoUML environment without modifying the basic ArgoUML
tool. This flexibility should encourage additional open source and/or commercial involvement with
the open source UML tool.

The module extensions will load when ArgoUML starts. When the modules are loaded they have the
capability of attaching to internal ArgoUML architectural elements. Once the plugins are attached,
the plugins will receive calls at the right moment and can perform the correct action at that point.

Modules can be interna and external. The only difference is that the internal modules are part of the
ar goun . j ar and the external are delivered as separate jar-files.

* Plugins

- Note

This description is for the old modulel oader.

A plug-in in ArgoUML is a module that implements the
org. argounm . appl i cati on. api . Pl uggabl e interface.
The Pl uggabl e interface acts as a passive dynamic component, i.e. it provides methods to simpli-
fy the attaching of calls at the correct places. There are severa Pl uggabl e interfaces that each
simplify the addition of one kind of object. Examples Pl uggabl eMenu, Pl uggabl eNot at i on.
One Module can implement several Pl uggabl e interfaces.

Thisis essentially and implementation of the Dynamic Linkage pattern as described in Patterns in Java

Volume 1 by Mark Grand ISBN 0-471-25839-3. The whole of ArgoUML Core is the Environment, the
classesinheriting Pl uggabl e are the AbstractL oadableClass.

6.2.2. Modules

6.2.2.1. Module Architecture for the old implementation

The controlling class of the module/plugin extension is
org. argoun . appl i cati on. nodul es. Modul eLoader . Modul eLoader is a singleton cre-
ated in the ArgoUML main initialization routine.

Modul eLoader will:

» read in the property file
+ for each of the classes found
1. create the specified classes
2. cdlinitializeMdul eonthisclass

3. placethe class object into the internal list of modules

94

Extending ArgoUML

6.2.2.2. The ArgoModule interface - used in the old implementation

Each class must derive from the Ar goMbdul e interface. This interface provides the following meth-
ods:

String get Mbdul eNane (void);

String get Modul eDescription (void);
String getMdul eVersion (void);
String get Mbdul eAut hor (void);
provides information about the ArgoUML module.
bool ean initializeMdule (void);

i nitializeMdul e iscaled when the class loader has created the module, and before it is ad-
ded into the moduleslist. i ni ti al i zeMbdul e should initialize any required data and/or attach it-
self as alistener to ArgoUML actions. i ni ti al i zeMbdul e for all modules is invoked after the
rest of ArgoUML has been initialized and loaded. Any menu modifications or system level resources
should aready be available when the module initialization processis called.

i nitializeMdul e should return true if the initialization is successful (or if no initiaization is
necessary).

The only available mechanism for handling dependencies between modules is the order in which
they are read from thefile.

voi d shut downhbdul e (voi d);

The shut downModul e method is called when the module is removed. It provides each module the
capability to clean up or save any required information before being cleared from memory.

voi d set Mbdul eEnabl ed (bool ean tf);
bool ean i sMbdul eEnabl ed (void);
Reserved for future implementation.

Vect or get Mbdul ePopUpActions (void);
Reserved for future implementation.

The plan is to have this called for each module when the module should add its entries in PopUpAc-
tions.

95

Extending ArgoUML

String get Modul eKey (void);

Returns a string that identifies the module.

6.2.2.3. Module Architecture for the new implementation

The controlling class for the new implementation is
org. argoun . nodul el oader. Modul eLoader 2. It is a singleton created when first used. It is
first used in the main initialization routine.

When created it searches through all available modules and creates a list of their main objects
(implementing Mbdul el nt er f ace). Currently (September 2004) this also means that the found mod-
ules are by default selected i.e. they are marked to be enabled.

At the end of the main initialization routine the selected modules are enabled. (The origina idea was to
do this several times during the main routine to alow for modules to add command line arguments, add
languages, and make functions available for batch command, but the example used for testing loaded the
ProjectBrowser "too early" and the result wasn't so good. | (Linus) hopes this can be eventually fixed.)

6.2.2.4. The Modulelnterface interface - in the new implementation

Each class used by the Modul eLoader 2 must implement the Modul el nt er f ace interface.
This interface has methods for enabling, disabling and identifying the module.

When a module is enabled it is expected to register some class wherever it affects ArgoUML using the
interfaces provided there. Since the same interfaces and registration mechanism is used internally within
ArgoUML there is a small likelyhood that there already is an interface and a possibility to register. If
thereisn't, ArgopUML cannot currently be extended at that point. If you still need ArgoUML to be exten-
ded at that point you will have to work in getting this interface or registration mechanism implemented
within ArgoUML. (This could a so be another module that has to be amended.)

Classes administered by the module that registers to whatever place of ArgoUML they are interested in,
does not need to have any connection to the module loader. They are written exactly as if they would
have been if they were part of the core ArgoUML.

6.2.2.5. Using Modules

When modules are used they can't be distinguished from the rest of the ArgpUML environment.

6.2.2.6. Howdo | ...?

e ..tell when amoduleis enabled?

The method i sEnabl ed in Modul eLoader 2 returns true if the module with that name is enabled
and false otherwise.

- Note

This only works for modules enabled in the new module loader. For modules loaded
using the old module loader, it is not possible to determine if they are enabled.

96

Extending ArgoUML

6.2.3. Plugins

- Note

This description is for the old modulel oader.

6.2.3.1. Plugin Architecture

Each class must derive from the Pl uggabl e interface. In addition to the methods declared in Ar go-
Modul e, which Pl uggabl e extends (see Section 6.2.2.2, “The ArgoModule interface - used in the old
implementation”), the interface provides the following method:

bool ean i nContext ((Object[] context);
i nCont ext allowsaplug-into decideif it is available under a specific context.

One example of a plugin with multiple criteria is the PluggableMenu. PluggableMenu requires the first
context to be a IMenultem which wants the PluggableMenu attached to as the context, so that it can de-
termine that it would attach to a menu. The second context is an internal (non-localized) description of
the menu such as "File" or "View" so that the plugin can further decide.

6.2.3.2. How do | ...?
» ...create apluggable settings tab?

e ...create apluggable menu item?

Look at the modules junit and menutest for examples of how to add to menus using the Pluggable-
Menu interface.

The implementation of inContext() that you provide should be similar to:

public bool ean i nContext (Object[] o) {
if (o.length < 2) return false;
if ((o[0] instanceof JMenultem &&
("Create Diagrans".equals(o[1]))) {
return true;
) return false;

The string "Create Diagrams' is a non-localized key string passed in ProjectLoader at about line 440
in the statement

appendPl uggabl eMenus(_creat eDi agrans, "Create Diagrans");

There is no restriction on a single class implementing multiple plugins - quite the contrary, that is

97

Extending ArgoUML

one of the reasons for providing the generic Pluggable interface that PluggableThings extend.

...create a pluggabl e notation?

...create a pluggable diagram?

Let's say we want to enable a new diagram type as a plug-in. We use the interface PluggableDiagram
that uses a method that returns an JMenultem object:

public JMenultem get Di agranivenul ten();

The returned menu item will be added to the diagrams menu to allow to open a new diagram of this
type.

In this example we do this by creating a helper class in the package org.argouml.application.helpers
that implements the created plug-in interface PluggableDiagram, and call it DiagramHel per:

public abstract class Di agrantHel per extends ArgoDi agram
i mpl ement's Pl uggabl eDi agr am {
/:* Default |ocalization key for diagranms
pU{)| ic final static String D AGRAM BUNDLE = "Di agraniType";
/:* String naming the resource bundle to use for |ocalization.
pré)t ected String bundle = "";
public D agranmtel per() {
) _bundl e = get Di agr amResour ceBundl eKey() ;
public void set Modul eEnabl ed(bool ean v) { }
public boolean initializeMddule() { return true; }
public bool ean i nContext (Object[] o) { return true; }
public bool ean i sMbdul eEnabled() { return true; }
public Vector getMdul ePopUpActions(Vector v, Cbject o) { return null; }
publi ¢ bool ean shutdownMdul e() { return true; }
public JMenultem get Di agranivenul t en()
t return new JMenul tenm(Argo. | ocalize(_bundl e, "di agram type"));

public String getDi agranResour ceBundl eKey() {
return DI AGRAM BUNDLE;

The extension of ArgoDiagram is specific to this example; the plug-in will provide a new ArgoUML
diagram.

98

Extending ArgoUML

! | mportant

Don't forget to do the localization stuff, because the plug-in might be used in al lan-
guages ArgoUML offers!

...do the localization stuff (not plug-in specific, but important)?

...create a pluggabl e resource bundle?

...create anew pluggable type?

1. Createthe plug-insinterface

In the package org.argouml.application.api, create an interface that extends Pl uggabl e (in
the same package). The class name must begin with 'Pluggable'.

Note

B

One of the main purposes of a plugin is to provide the capability to add an extern-
ally defined class that will be used by ArgoUML in the same way as asimilar in-
ternal class. This means that modifications are needed all over ArgoUML in order
to cal the pluggable interface. Therefore this must be done in ArgoUML itself
and cannot be done in any module.

It now inherits from Ar goModul e the methods

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

c

c

bool ean initializeMdul e();

bool ean shut downModul e() ;

voi d set Mbdul eEnabl ed(bool ean tf);

bool ean i sMbdul eEnabl ed();

String
String
String
String
Vect or

String

get Modul eNane() ;

get Modul eDescri ption();

get Modul eVer si on();

get Modul eAut hor () ;

get Modul ePopUpAct i ons(Vect or
get Modul eKey() ;

and from Pl uggabl e the methods

public bool ean i nCont ext (Cbject[] context);

popUpActi ons,

nj ect

99

cont ext)

Extending ArgoUML

and thus provides the basic mechanism that plug-ins need.
2. Decideinwhat context thisis to be enabled and add calls there
It isuseful for those plugins which actually use context to provide a hel per method

oj ect[] buildContext (classtypel paraneterl , classtype2 para-
neter2);

which will serve two purposes.
First, it will provide asimple way of creating the Object[] parameter.
Second, it helps to document the context parameters within the class itself.

Againusing Pl uggabl eMenu as an example, it contains the function

public Object[] buil dContext(JMenultem parent Menultem String nenuType);
which isused as follows:

i f (rmodul e. i nCont ext (nodul e. bui | dCont ext (_hel p, "Help"))) {
_hel p. add(nodul e. get Menul tem(_hel p, "Hel p"));

6.2.4. Tip for creating new modules (from Florent de
Lamotte)

- Note

This description is for the old modulel oader.

Florent wrote a small tutorial for creating modules. It can be found on the ArgoPNO website
[http://argopno.tigris.org/documentation/argouml.html].

6.3. How are modules organized in the java
code

The previous section describes how modules and plug-ins are connected on the java level totally inde-
pendent of how they are actually linked into ArgoUML.

Within the ArgoUML project some parts of the code are for different reasons developed and kept separ-
ate from the main ArgoUML source code. These parts can be modules or plug-ins on the java level but
on the source code level they are called modules. This section describes how they are organized and how
you create such source-code modules.

6.3.1. Requirements on modules

100

http://argopno.tigris.org/documentation/argouml.html

Extending ArgoUML

An external module requires:

1. Themodule main class implements org.argouml.modul el oader.Modul el nterface
2. Archivethe main classinto ajar, with an entry "Name" in MANIFEST.MF specifying the name of
the main class. For example, Name:
Name: your/own/ domai n/ your/ package/ your. cl ass
The class in question must implement or g. ar goun . nodul el oader . Modul el nt er f ace.
3. Putthejar fileinto adirectory called "ext" under the home directory of ArgopUML
4. Run ArgoUML and check if the module appears in Edit -> Settings -> Modules
New modules that are added to ArgoUML shall reside in whole new packages. Either you put your mod-
ule classes in your . own. dorai n . your. package. nanme or if you want to emphasize the con-

nection to ArgoUML you <can use org.argouni.your.package.nane where
your . package. nane isthe name of your addition.

6.3.2. How do | ...?

e ...create anew source-code module.
Suggestion, copy from the menut est module as described here.
Make acopy of ar gounl / nodul es/ menut est intoar gouni / nodul es/ your nane .

Add any jar you need to ar gouni / nodul es/ your nane /1 i b and add references to each of
thejarsinar gounl / nodul es/ your name/ bui |l d. xn .

Edit ar goum / nodul es/ your nane /nodul e. properties
Edit ar gounl / nodul es/ your nane/ src/org/ mani f est. nf.

Reorganize the source files as necessary. Remove the directory ar gound / nodul es/ your nane
[src/org/argoun / ui and create your own classes like org.argouml.your package nane
inar goun / nodul es/ your name /src/org/argoum /your package nane .

* ..get Argoto useaplug-in?

- Note

This description is for the old module loader.

Once you've created ajar file with aplug-inin it, you need to make sure that Argo can find the jar to
be able to executeit.

If you are using a "standard" ArgoUML source structure, then you should be able to execute build
install or ant install in the source directory of the plug-in. This will copy the jar file to the proper
directory in the main ArgoUML build target. You can test your plug-in by running build run in the
sr c_newdirectory.

101

Extending ArgoUML

If you need to install the jar "the hard way", try the following steps.
e Start up ArgoUML.

¢ Go to the menu Edit->Settings and look at the Environment tab. Find the entry labeled
${argo. ext . dir}. Createthat directory if it does not aready exist.

e Copy the plug-in jar and any other jars required by it into that directory.

o Start up ArgoUML again, and you should see the plug-in's startup banner (if it has one, of
course).

102

Chapter 7. Organization of ArgoUML
documentation

Linus Tolke

This chapter describes what goes into which part of the documentation. These ideas are formulated by

Linus Tolke.

7.1. Overview

There are seven significantly different bits of documentation in the ArgoUML project. By documenta-
tion | mean some information of the product that is developed alongside the product and that has a per-

sistent value.

1. The code, variable names, class names
2. Thejavadoc

3. The cookbook

4. ThewebsiteinCVS

5. Themanua and quick-guide

6. Help textswithin the running ArgoUML
7. TheFAQ

These different bits have al different purpose and audience and the purpose of this chapter is to try to

define that.

Table 7.1. Bits of documentation

Bit Audience Main purpose Contains
Source Implement ArgoUML in a main-|See Chapter 9, Sandards for cod-
Code tainable and understandable way. |ing in ArgoUML for details on
1. Other developers how to write the code.
that will main-
tain and improve
on the code.

2. Thecompiler.

Javadoc |Developers writing|Make it easy to see what the func- | Description of the functions of all
code that communic-|tions of every class are and how|classes, all public and protected
ates or in other ways|to use them. methods, variables, and constants.
interact with this
class.

Cookbook |Developers writing|Make it easy to learn how|Instructions on how to add new
code, maintaining the| ArgoUML works and how to ex-|functions and behavior. Instruc-

103

Organization of ArgoUML documentation

Bit

Audience

Main purpose

Contains

documentation or the
web site.

tend it. Be a collection of know-
ledge around how everything is
set up. Be a store of the agreed
solution around fundamental
design decisions i.e. design de-
cisions that are so big that it is
meaningless to store them in the
javadoc. Be a collection of know-
ledge around how and why the
project makes certain decisions.

tions on how to do the chores
around maintenance (build a re-
lease, publish a release, build the
documentation part of the release,
test ArgoUML, test the docu-
mentation, ..). Agreed project
rules like what level of quality is
aimed for and description of pro-
cesses that achieves that level.

Web site
inCVvS

Everyone, i.e. de
velopers in the
project, users of the
product, people

searching for UML
tools for the purpose
of trying, testing,
evaluating, and using
the tools.

Be an entry point for the other
parts of the documentation. Be
the main download area for the
ArgoUML product. Be the central
point of the ArgopUML user com-
munity. Be the central point of
the ArgoUML development
project.

References to all the other parts
of the documentation. Current
project information like the con-
tents of the upcoming releases
and the plan for the nearest future.
Easy access illustration for users
to be. Some illustrations that do
not work well in the other parts of
the documentation. This is done
as a complement to the other
parts. Examples, tours.

Manua
and quick-
guide

Users of ArgoUML.
Persons that want to
evaluate ArgoUML
for the purpose of
starting to use it. Per-
sons that are training
to use UML and
ArgoUML.

Describe how ArgoUML is in-
stalled and used. Describe how
UML isused with ArgoUML.

Complete installation instructions
for al supported installation
schemes. Complete description on
how to use ArgoUML in your
project. Complete reference on
how to use ArgoUML.

Help text
in
ArgoUML

Users of ArgoUML.

Give a quick help with a specific
feature or button. Give short ex-
planations of all commands and
actions.

A complete set of quick help and
explanations.

FAQ

Users of ArgoUML.
Members of the users
mailing list.

Cope for shortcomings in
ArgoUML, the help text, the
Manual and quick-guide and the
web site.

A list of issues that are not ad-
dressed in the other part of the
documentation. It is written in
guestions-answers-format and the
contents is governed by the issues
discussed recently in the user
community.

The Cookbook, the User Manual, and the Quick Guide, are all written in docbook and generated into
HTML and PDF during deployment. See Chapter 10, Sandards For Documentation Wkiting for details
on how to write these.

7.2. User Manual Plans

The User Manua is a very separate part of the ArgoUML project. It is independent of the rest of the
project w.r.t. updates, deliveries, ambition and plans. The development of the User Manual is more or
less a project of its own. Since autumn 2003 we also have an appointed sub project leader for this. This
Responsibility is called Editor for the User Manual and Quick Guide and is held by Michiel van der

Wulp.

104

Organization of ArgoUML documentation

This section describes the ambition and plans for the User Manual.

7.2.1. Target Audiences for the User Manual

Target audiences are the following:

o Experienced users of UML in OOA&D (perhaps with other tools) who wish to transfer to
ArgoUML.

» Designers who know OOA& D, and wish to adopt a UML based process.
In the longer term it would be desirable to also target the following.

* Thosewho are learning design and wish to start with a UML based OOA& D process.

» Peopleinterested in modularized code design with a GUI.

7.2.2. Goals for the User Manual

The goals are (in priority order):

1. A tutoria style explanation of ArgoUML in the context of an OOA&D process.

2. Descriptive reference material on all components of ArgoUML

3. Keep boundaries clearly defined, to avoid duplication with the Cookbook, FAQ, Quick Guide, on-
line help etc.

| (probably Jeremy Bennet in 20027) think the existing User Manual is a good start particularly towards
the second of these goals.

7.2.2.1. What the User Manual is not (currently)

To keep the effort feasible the user manual should avoid the following (at least initially).

» Providing aquick overview—the Quick Guide already doesthis.

» Listing al the errors and what they mean. The help system does this—one day the manua will link
to that.

» Explaining the internal workings of ArgoUML. The cookbook, combined with Jason Robbins disser-
tation is already a good start for this.

7.2.3. Suggested Manual Structure

Here are my (Jeremy Bennet, 2002?) thoughts. | think the user manual is really a set of two books, the
tutorial manual (corresponding to Part | of the current manual), and the reference manual (Part 11 of the
current manual)

105

Organization of ArgoUML documentation

| (Jeremy Bennet, 2002?) suggest that the tutorial book be based around an OOA& D process (any pref-
erences), and that each UML concept is introduced with each step of the process, followed by an explan-
ation of how to do it under ArgoUML. A simplecase study will be needed throughout.

7.2.3.1. Tutorial Manual Structure

1. Introduction
a. Originsand overview of ArgoUML

b. Scope of the User Manual. Include cross-reference to other documentation (Cookbook, FAQ,
Quick Guide, on-line help, ArgoUML website etc).

c. Overview of the User Manual. Explains that ArgoUML will be explained in the context of an
OOA&D process, and with an example running through.

d. Assumptions. At this stage assume the user knows OOA&D, but not UML.
2. UML Based OOA&D

a. Background to UML—what it is, history etc.

b. UML based processes for OOA&D

c. ArgoUML Basics—projects, drawing, exploring, details

d. What ArgoUML has that other tools are missing (critics, to-do list, based in cognitive psycho-
logy theory).

e. TheCase Study
3. Requirements Capture

a Use Case Diagrams (this section will be relatively large, because its the first time we use
ArgoUML to create something).

4. Anaysis
a. Concept Class Diagrams
b. System Sequence Charts and Collaboration Diagrams
c. System State-chart Diagrams
5. Design
a. Class Diagramsfor Realization
b. Sequence Charts and Collaboration Diagrams for Realization
c. State-chart Diagramsfor realization
d. Package Diagrams
6. Build

a Deployment Diagrams

106

Organization of ArgoUML documentation

b. Code Generationin ArgoUML

7.2.3.2. Reference Manual Structure
1. Material on each of the diagram types, each of the artifacts that can appear on the diagrams and de-
tails of the features of each artifact type.

2. AnlIndex

7.2.4. Actions, Priorities and Questions

This section has two serious problems. Firstly, | (Linus Tolke, 2004) think Jeremy Bennet wrote this and
then started and has completed a lot of the items so they could be checked off. Secondly, keeping this
list in a docbook document is not agood idea. It is better to make issues in Issuezilla of it that can be in-
dividually closed. | (Linus Tolke 2004) will make issues of the things | think are left to be done and re-
move this section (unless someone beats me to it).

7.2.4.1. Actions and priorities
Here's my first call for what needs to be done in priority order. From the comments made over the last
few days| think the first 5 items won't take very long, meaning effort can concentrate on the main stuff.
1. Get buy-in for the approach. (Completed)

Agree document structure (broadly). (Completed)

Choose a suitable example to run throughout.

Break into several files (XML entities) to make the manual more manageable. (Completed)

Identify all existing sources of material to be reused

©o u &~ w N

Get writing! | (Jeremy Bennet 20027) suggest the priorities here are:

a. User Manua sections relating to ArgoUML diagrams and artifacts (assume the reader knows
UML already, and alows a quick advance by pulling together alot of existing material).

b. User Manua examples

c. User Manual sections relating to additional ArgoUML cognitive design features.
d. User Manual sectionsrelating to UML (for readers who don't know UML).

e. Completion of Reference Manual material.

7. Create an index. (Completed)

7.2.4.2. Remaining Questions

1. The current manual shows copyright held by Phillipe, and no legal notice. What is the position of
this material ? (Solved)

107

Chapter 8. CVS in the ArgoUML project

The CVS repository is a shared resource in the project. This means that once you commit your stuff it
has the potential of getting in the way of everybody else's work in the project. For this reason special
considerations are needed. This chapter describes the how you should do to limit the risk of causing
someone el se problems.

8.1. How to work against the CVS repository

When you have done al the work, and all the testing and are about to commit something please do:

1. Compile ArgoUML (build run or build package).
This goesfor all changes, even changesin comments.

2. If your changes include removing files make a clean compile. (build clean followed by build run
or build package).

3. If your changes include removing public or protected operations and attributes make a clean com-
pile (build clean followed by build run or build package).

The build mechanism does not yet have reliable dependency checker enabled so thisis the best way
to make sure.

4. If your changes include adding abstract operations make a clean compile (build clean followed by
build run or build package).

The build mechanism does not yet have reliable dependency checker enabled so thisis the best way
to make sure.

5. If you have changed anything that has the potential of affecting something in atotally different part
of the code like internal data structure, handling of exceptions, run all JUnit test cases and start the
tool and do some more testing.

If in doubt, run al JUnit test cases.

6. Do acvsupdatein src_new to make sure that you do not forget to commit any file and to make
sure that no one else has committed anything in the mean time.

Remember that if you do not commit all the files from src_new that cvs update found (marked A,
R, and M) in the same commit then you would better remove those file from the checked out copy,
update to get the original version from the repository and start over with the compilation.

If someone else have updated a file (cvs update shown U, or no longer pertinent) please compile
again.

7. Commit al filesthat are included in a change at the same time.

This reduces the chance of anyone getting an inconsistent set of files by updating in the middle of
your commit.

8. Commit often.
Remember that the repository is also a backup copy of your work.

If your change is so big and involves so many files that you would like to commit it for backup

108

CVSinthe ArgoUML project

reasons but it doesn't compile or doesn't work or for some other reason should not confuse the main
branch in CVS, create a branch to work in. Then when your work is complete, you merge the
branch into the main branch.

Rationale: These ground rules is for the purpose of not stopping or hindering the work for anyone. Re-
member that there might be several developers working with different agendas and different efficiency
(dlower or faster) and the commits is the melting point of this.

Perspective: If this will take you an extra two minutes before every commit remember that if you com-
mit something that will not work this will take everyone else (guess 10 persons) the extra time of look-
ing at the compilation error or see the tool crash (1 minute), wonder why (1 minute), search for the error
in his own changes (3 minutes), search for the error somewhere else (1 minute), glance at the mailing list
to see if someone else has noticed this and send a mail (1 minute), wait for some response (1 hour wait),

update (1 minute), compile (1 minute). This amounts to 10 hours wait and 1.5 hours extra work for all
developersin the project.

8.2. Creating and using branches

We use the following standardsin ArgoUML:

» Released versions get thetag VERSION_X X X

» Developers working on code, with an unspecified due date are requested to put the code into a
branch if it is deemed useful that the code can be shared. Developer branches follow the scheme:
work_expl anat i on_owner , where
* workisalitera
e expl anat i on issomething like javahelp, propertypanel, cppcodegeneration
e owner isasdf explaining code for the owner of the branch, e.g. tlach (Thierry Lach) or mkl

(Markus Klink).

Merging branches together is causing some work. So please use them sparingly and announce your in-
tentions before on the mailing list.

1. How do | ...?

e ..commit stuff?
Y ou have made, the change, tested it and are satisfied with it.

Do acvs update -d and see that only the files you have changed are marked as modified. If files are
updated or patched by this command, please recompile and test again.

Do acvsdiff on each of the files and verify that only the lines you have changed are modified.

Do asingle cvs commit for al the files included in the change. This reduces the risk that someone
€else updates in the middle of your work and also reduces the amount of notifications of commits sent
out. Include changes to documentation and JUnit tests if applicable.

109

CVSinthe ArgoUML project

Don't forget to update the corresponding issue (if any) in Issuezillai.e. set it to RESOLVED/FIXED.
...get my update or patch into CVSif | don't have CVS write rights?

Contact any of the active developers on the list and send them your updates. They're very nice about
it the first few times.

Supposing that you have checked out CV'S as guest, then after you have mailed a diff or file to an
active developer, and he has entered it in CV'S your checked out copy contains the change but is not
in sync and the next cvs update will result in an merge error. The simplest way to solve thisisto do
remove all files modified by you before doing the cvs update. The cvs update will restore all the
files from the CV S repository and you can start with the next update.

...get alist of the currently active working branches?

You can't from CVS. You need to follow the announcements of created and discontinued branches
on the mailing list to know what branches are interesting.

...create abranch for my work on xxxyyy and start work on that branch?
This assumes that you have a checked out copy of ArgoUML
1. Changedirectory to the directory where ArgoUML is checked out.
2. Enter the argouml directory: cd argouml or chdir argouml
3. Createyour branch: cvstag -b wor k_xxxyyy_rmnmynane
nynare isisasef explaining code for you (your Tigrislogin).
4. Change your checked out copy to be on the branch: cvs update -r wor k_xxxyyy_nynare
5. Do your work!
6. Check in your changes in the branch: cvs commit -m'Bl abl abl a' [fil€]
7. Continue working and checking in!
...move my work from my working branch into the release?

This is done when your work with the feature xxxyyy is finished and you have decided/received
clearance to enter it in the main branch.

1. Change directory to the directory where ArgoUML is checked out.
If you are just working on one feature at atime this is the place where you have a checked out
copy on the branch in question. If not, this could be any checked out copy of the source that
does not contain any uncommitted changes.

2. Enter the argouml directory: cd argouml or chdir argouml

3. Move the checked out copy that you are working on to the main branch: cvs update -A

4. Merge the changes from the branch into your checked out copy: cvs update -j
wor k_XXXyyy_nynane

5. Compileand run al your tests again.

This is to verify that the merge was al right, no one else had done any changes that in the

110

CVSinthe ArgoUML project

meantime that has in any way modified the work made in the branch.

6. Commit your changes in the main branch: cvs commit -m'xxxyyy entered in the
mai n branch

7. Discontinue your branch!
From this point on it isimportant that you do not reuse your branch for any work. Only check it
out for the purpose of examining how things were in the branch. Make sure that all other de-
velopers that have been looking at your branch also knows that it is discontinued.

...look at someone else's work in a branch?

Y ou need the name of the branch, i.e. thewor k_xxxyyy_hi snane.

There are two alternatives:

e Check out ArgoUML or part of it on that branch: cvs co -r wor k_xxxyyy_hi snane argouml

« Update your copy of ArgoUML to be on that branch: cvsupdate -r wor k_xxxyyy_hi sname

Make sure that your copy does not have any uncommitted code or else your uncommitted code

will be present in your checked out copy on the branch. This could, on the other hand, be useful
if you want to test if your uncommitted code works also with the additions on that branch.

8.3. Other CVS comments

This is included in the cookbook because it seems that there are persons within the project that don't
have the in-depth knowledge of CV S nor the interest or need to acquire it. For that reason some simple
guestions are answered here for use of CV S in the project.

Why do | get double lines? Why do | get *M at the end of each line? Why do | get the whole
checked out file on asingle line?

CVSiisline oriented. It stores in the repository the concept of a new line after each line. It is the
CVS clients (the program you have installed on you machine) responsibility to convert the conceptu-
a new line to the correct new line character on your system.

- Note

Thisisonly so for normal files (not marked with -kb in CVS).

If files are moved from one system to another or for that matter checked out on one system and used
and edited on another (NFS, SMB, ...) thisis not done correctly. There could also be CV S clients out
there, not doing this correctly.

Systems known to the author (Linus Tolke) are Unix uses LF, DOS/Windows uses CR-LF, Mac uses
CR.

Most of the time this really doesn't matter because the editors and java compiler on all systems are
very forgiving.

There are however some cases when this is cumbersome.

111

CVSinthe ArgoUML project

1. When an editor (or developer) decidesto "fix-it".

This means that the editor (or the developer) goes through the file and removes *M on every
line or something else that touches every linein thefile.

Thisis a problem because the subsequent commit will also touch every line in the file making
that file unmergeable. This means that every developer that had it modified in a branch or in a
checked out copy will have no help from CV S when doing his merging.

Remember that you never know what other devel opers are working with.

Thisisfixed by not doing any such fixes and doing a cvs diff before each check in so that your
editor has not done this for you.

2. When CVSclients and file systems are not in sync

This could result in one of severa things. Either each line gets an extra empty line when com-
mitted, or the whole file turns out to be on the same line.

This is the case on several files in the repository at the moment (August 2002, Linus) and can
be cumbersome for the devel opers.

These cases should be fixed because the files are no longer readable. For the first case, remov-
ing every other line (the empty ones) can in some cases be done without CV S having problems
with merging later on. For the second case, with asingle long line, thiswill be very problematic
so even though it might cause problems for other developers it is better to do this as soon as
possible.

When thisisfixed, let the fix be the only thing done in that commit.

To avoid this in the future, aways do a cvs diff before doing your change to make sure that
only the lines that you have actually modified will be changed by CV S and not the wholefile.

Files that are binary that shall be stored in CV'S shall be marked as binary. They are marked with the
admin flag -kb. This means that the line ending conversion mechanism will not be applied on those

files and they will be exactly the same on al systems. This is good for jars, GIFs, and other such
files.

8.4. CVS repository contents

This chapter describes what parts of the CVS repository is used for what purpose. This is a rather terse
collection. Further details on specific parts can sometimes be found elsewhere in this document.

This chapter is organized as the CV S repository itself and everything isin alphabetical order.

Thisiswhat the main argouml project looks like:

 build
Directory where the built things end up.
Thereisactually no real need to keep thisin CVS. It isthere just as a place holder.

e« conf

112

CVSinthe ArgoUML project

Not used. Empty.
docunent ati on
Directory where the source of the documentation is.
» cookbook
XML-source code for this cookbook.
e docbook-set up

XML Tools and configuration files used for the formatting of the documentation from the XML-
source to HTML and PDF.

* imges

Pictures for al documents are collected here.
e javahelp

Not used. Empty.
* manual

XML-source code for the User Manual.
e qui ck-gui de

XML-source code for the Quick Guide.
extra
Not used. Empty.
lib
A set of jar files.
This directory contains the jar files of products shipped with ArgoUML (such aslogdj, NSUML).
These are distributed with ArgoUML and have licenses that alow this. For clarity the README
files and licenses and other distribution details of each used jar will also be stored in this directory.
(Quick summary: BSD License, Apache License, LGPL are OK, GPL isnot.) Don't forget to arrange
L%rxthe modules version and license information to appear when starting ArgoUML and in the About
Take care also to make the versions of these libraries explicit, so as to allow people building from
sources to figure out exact dependencies. Easiest way is to rename the files to include version in-

formations, the same way as shared librariesin Unix world: foo-x.y.z.jar, bar-x.y.z.jar, etc...

When separating ArgoUML into modules, the jar files connected to a specific module is instead
stored together with the module.

nodul es
Contains source level modules of ArgoUML.

Source level modules are modules that can be compiled and deployed independently (after) the rest

113

CVSinthe ArgoUML project

of ArgoUML. Each module is located in its own subdirectory. Thisisthelist asit looks now (March
2003).

j schene
Module that allows to extend ArgoUML using scheme.
junit

Old directory with JUnit tests. These should be migrated to and all new JUnit tests should be cre-
atedinthedirectory t est s.

menut est

Test module that tests the plug-in interface for the menus.

php

Language generating, Notation and reverse engineering for PHP.
cpp

Code generation for C++.

csharp

Code generation for C#.

Thisis now moved to a subproject so thiswill eventually be removed.

Src

Source code.

This contains one directory for each subsystem within ArgoUML.

Each subsystem will have a subdirectory with the same structure:

lib-optiona

jar fileswith products shipped with ArgoUML.
bui I d. xm

The file controlling the build of that subsystem.
src

The source code.

t est s - optional

The JUnit test cases for that subsystem.

src_new

All source code for ArgoUML including pictures of icons.

tests

114

CVSinthe ArgoUML project

Source code for JUnit tests of everything that isin the src_new directory. See Section 2.5, “The JU-
nit test cases’.

* tools
All tools used during the build process.
Tools aso have the readme files, licenses and other distribution files stored in this directory in much
the same way as the librariesin | i b. However the requirement on the license is different. The tools
are never distributed with ArgoUML but merely used in the development of ArgoUML so it is
enough to have alicense that does not allow distribution. (Quick summary: BSD License, Apache li-
cense, LGPL, GPL, Freeware are OK.)

o VWW
This is al the static contents of the web site. See Section 2.7.1, “How the ArgoUML web site
works”.

The ArgoUML subprojects are projects on Tigris that belong to the ArgoUML project. To simplify the

administration, they are all set up in asimilar way and also similar to the src and modules directories.

Thisiswhat their cvs repository looks like:

e build. xm
Thefile controlling the build of that subsystem.
When built, the result end up in anewly created build directory.
e |ib-optional
jar files with products shipped with the module in that subproject.
* src
The source code.
e tests -optiona
The JUnit test cases for that subproject.
e tools-optiona

Any special tools needed to build that subproject. The tools from the argouml tools directory can
also be used so thisisjust the new ones.

* WwWv

The web pages for that subproject.

115

Chapter 9. Standards for coding in
ArgoUML

9.1. Rules for writing Java code

The coding style for ArgoUML isthe following
» Eachfile starts with some header info: file, version info, copyright notice. Like this:

$1 d$

Copyright (c) 2005 The Regents of the University of California. Al

Ri ghts Reserved. Permission to use, copy, nodify, and distribute this
software and its docunmentation w thout fee, and without a witten
agreenment is hereby granted, provided that the above copyright notice
and this paragraph appear in all copies. This software program and
docunent ati on are copyrighted by The Regents of the University of
California. The software program and docunentation are supplied "AS
I'S", without any acconpanying services from The Regents. The Regents
does not warrant that the operation of the programw |l be
uninterrupted or error-free. The end-user understands that the program
was devel oped for research purposes and is advised not to rely

excl usively on the programfor any reason. | N NO EVENT SHALL THE

UNI VERSI TY OF CALI FORNI A BE LI ABLE TO ANY PARTY FOR DI RECT, | NDI RECT,
SPECI AL, | NCI DENTAL, OR CONSEQUENTI AL DAMAGES, | NCLUDI NG LOST PROFI TS,
ARI SING QUT OF THE USE OF THI S SOFTWARE AND | TS DOCUMENTATI ON, EVEN | F
THE UNI VERSI TY OF CALI FORNI A HAS BEEN ADVI SED OF THE PGSSI BI LI TY OF
SUCH DAMAGE. THE UNI VERSI TY OF CALI FORNI A SPECI FI CALLY DI SCLAI M5 ANY
WARRANTI ES, | NCLUDI NG, BUT NOT LIM TED TO THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE. THE SOFTWARE
PROVI DED HEREUNDER IS ON AN "AS |I'S" BASIS, AND THE UNI VERSI TY OF

CALI FORNI A HAS NO OBLI GATI ONS TO PROVI DE MAI NTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODI FI CATI ONS.

L N N S N N
L N N S N N

package whatever;

Thefile and version is maintained by CV S using keyword substitution. The year in the copyright no-
tice is maintained manually.

This differs from the Sun Code Conventions that requires the initial comment to be a C-style com-
ment.

Thisis checked by Checkstyle.

e All instance variables are private.
Thisis not required by the Sun Code Conventions but an additional requirement for ArgopUML.
Thisis checked by Checkstyle.

* Use Javadoc for each class, instance variable, and method. In general do not put comments in the
body of a method. If you are doing something complex enough to need a comment, consider break-

116

Standards for coding in ArgoUML

ing it out into its own private commented method.
Thisis not required by the Sun Code Conventions but an additional requirement for ArgoUML.

Thisis partly checked by Checkstyle. Checkstyle does currently only warn if a Javadoc comment is
omitted for a public, protected or default visibility variable or method.

Indicate places of future modifications with
/1l TODQO reason
This differs from the Sun Code Conventions that uses either XXX or FIXME depending on if it

works or not.

Four spaces should be used as the unit of indentation. Tabs must be set exactly every 8 spaces (not 4)
and represent 2 indents.

Thisisexactly asit is stated in the Sun Code Conventions. It is here just for the emphasis.

Thisis checked by Checkstyle.

If possible use lines shorter than 80 characters wide.

Thisisexactly asit is stated in the Sun Code Conventions. It is here just for the emphasis.

This is checked by Checkstyle. Checkstyle ignores three kinds of lines in this check because of the
historical use of long class names and package names. These are lines that contain
"Il $ld:what ever $', import statements, and Javadoc comments with @see-tags.

Open brace on same line (at end). Both for if/while/for and for class and functions definitions.
Thisisexactly asit is stated in the Sun Code Conventions. It is here just for the emphasis.

Use deprecation when removing public and protected classes, methods and attributes.

Whenever you have a public or protected method or attribute in a class or a public class that you
want to remove, change the signature in an incompatible way, or make change visibility for you shall
aways deprecate it first. After the next stable release you (or someone else) can remove it.

In the future, when the subsystems are well defined and it is clear what public or protected methods,
attributes or classes that are part of a certain subsystem's exported interface we can alow an excep-
tion to thisrule for methods, attributes and classes that are not. (See Section 4.2, “Relationship of the
subsystems’.)

Write deprecation statements like this:

* @leprecated by your nane in the upconing release. Use {@ink whatever}

a conpl ete explanation on what to do instead

Thisis not checked by Checkstyle.

Rationale: This is part of the "Do Simple Things'-development approach that we use in ArgoUML.
ArgoUML is a big project with lots of legacy code that we do not know exactly how it works. De-
precation shows the intent between decision to remove a method and the point where it is actually

117

Standards for coding in ArgoUML

removed and this without breaking anything of the old code. There are also modules or plug ins that
we might know nothing about that could be loaded by some user to run within ArgpUML to add
functionality. It is for the modules and plug ins that we always save deprecated methods to the next
stable release. It makes it possible for the module devel opers to do work during the unstable releases
and release at the same time as ArgoUML releases its stable release.

Don't use deprecated methods or classes.

Rationale: Deprecation is an indication that a class is to be removed. We aways want to build
ArgoUML inaway that allows for future updates of everything. Using things that are on the way out
already when doing the implementation is for this reason not allowed.

Rationale 2: If you feel like you really want to use a method that is deprecated instead of the replace-
ment you should first convince the person responsible for doing the deprecation that he has made a
mistake and upgrade ArgoUML to aversion of that library without that method or class deprecated.
If it iswithin ArgoUML discuss it with the person who actualy did the deprecation or in the devel-
opment team.

Comment: There is an ongoing work (probably perpetually) to change the calls to deprecated meth-
ods and classes that has been deprecated after used in ArgoUML. Thisisanormal part of improving
ArgoUML. If this work is too slow it makes it impossible to upgrade to new versions of different
sub-tools. This problem is seen by "the person responsible for sourcing of the sub-tool" when actu-
aly trying to upgrade the sub-tool. (See Section 11.8, “How to relate issues to problems in sub-
products’.)

Don't use very long package and class names.

To make the code readable, keep class names shorter than 25 chars, and have at most four levels of
packages.

Historically in the ArgoUML design, a deep package structure has been used. There are severa
places in the code where the package structure is mimicking the UML hierarchy of objects resulting
in impossibly long package names like
org. argoum . nodel . unl . behavi or al el enent s. col | abor ati ons. cl ass nane |,
andor g. argoum . uml . ui . behavi or. conmon_behavi or. cl ass namne .

While establishing the subsystems we use atwo-level approach much like the rest of the Java world.
For the subsystem API we always use: or g. ar goum . subsyst em package nane i.e the
classes are in the subsystem'’s directory and all subsystems have package names that isa single level
below or g. ar gount . If a subsystem is really complex or will be complex w.r.t. the amount of
classes (meaning more than 50 files with classes), we create new packages with internal classes on a
single level below the subsystem package.

Thisisthe plan for the subsystems and new classes. Don't move old classes just yet! That would cre-
ate more confusion that it would help.

For everything else follow Code Conventions for the Java Programming Language
[http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html] (called Sun Code Conventions)!

Some of these rules are marked with a comment that they are checked by a Checkstyle. Checkstyleis a
tool available with the ArgoUML development environment preconfigured for these rules. The current
configuration can befound inar gour / t ool s/ checkst yl e/ checkstyl e_argoum . xm .

To run Checkstyle run the command build checkstyle from the ar gouni / sr c_new directory. This
requires you to have checked out the directories argounl/tools, argounm /tests, and
argouni / src_new.

118

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

Standards for coding in ArgoUML

Thelast couple of Checkstyle result are also available in the Xenofarm result.

Checkstyle will also check some of the rules from the Sun Code Conventions that are not stated here.
Furthermore Checkstyle nags about when the order of modifiers does not conform to the suggestions in
the Java Language Specification, Section 8.1.1, 8.3.1, 8.4.3.

9.2. Rules for the building process

For thebui | d. xm fileswe use the following rules.

» Becareful when downloading stuff.

ArgoUML is supposed to be a self-contains development environment. Some times it is better to
have things downloaded from the ant script instead of from the CV S repository. In that case separate
the download-targets from the target that does building so that it is easy for everyone to know when
their development machine is working against the Internet and when it is not.

» Public targets shall have description. Non-public targets shall not have description (write xml com-
ments or echos instead).

» Useant-built-ins for everything.

ArgoUML is supposed to be a self-contains development environment. If you feel tempted to use
other tools (perl, sed, nsgmls), don't! They are probably not present in al environments where we
want to run a development environment.

9.3. Checklist for using sub-products

Linus Tolke

In the ArgoUML project we use several sub-products to solve parts of the problem for us. These sub-
products are an important part of the ArgoUML tool and must be handled in a good way if ArgoUML is
going to be successful.

When this is written (March 2004) we have had problems with the discontinuance of one of the sub-
products (NSUML) and will continue to have it for well some time in the future, until we have managed
to replace it. The problem with NSUML could probably not have been foreseen or avoided if this check-
list would have been in place when NSUML was taken into the project but some more apparent risks
with sub-product candidates might be.

Here is the list of things to check in the sub-product and to discuss with yourself and maybe with the
ArgoUML development team before considering to use it in the ArgoUML project.
* License

We must be allowed to develop against, release with, distribute, and use the sub-product indefinitely
without monetary or other compensation.

Rationale: We have no money in the ArgoUML project, we don't want to have money in the
ArgoUML project. We have no organization that can enter agreements and live up to them. We don't
want to require our usersto enter agreements to use ArgoUML.

o Javaversion

The sub-product must have a policy that matches the ArgoUML project policy on Java version re-

119

Standards for coding in ArgoUML

quirements.

Rationale: The ambition for ArgoUML is to be a working tool for as many people as possible. Java
is still under development and there are nice features available in future releases. In ArgoUML we
have a plan for how to handle this. It is to always support two major releases of Java (currently JDK
1.3 and 1.4). We cannot have a sub-product that restricts usin this aspect.

Distribution

We require the sub-products to make it possible for us to take the distribution, enter it in our CVSre-
pository and write rules to automate the use of the sub-product while developing, releasing and run-
ning ArgoUML. This automated use must be able to run without relying on access to some server
and without user intervention.

The API documentation of the sub-product (assumed to be Javadoc) we can use from some web site
belonging to that sub-product.

Rationale: In the ArgoUML project we want to make it as easy as possible for our users to install
ArgoUML. We also want to make it as easy as possible for our developers to get their devel opment
environment working and for the release manager to prepare the rel eases.

Road map

The project devel oping the sub-product must have a plan that fits the ArgoUML plan for the future.

Rationale: If a sub-product will soon go somewhere else i.e. stop doing what we require or stop sup-
porting what we require, then we will soon have troubles with that sub-product.

Working project

The project that develops the sub-product should be a working project. Check that there is some per-
son responsible for it, preferably with ateam or organization backing him. Check that thereisaplan
for upcoming releases. Check that there is away to report bugs and enhancement requests.

Rationale: We don't want to rely on a sub-product where there is no chance of ever getting a bug that
we encounter fixed. We are also part of an ever-evolving world. Soon we want the tool to do more
for us. We should then be able to wish that and eventually get an updated sub-product.

Notice that we should not and don't need to do this in a passive way. We should explain to the sub-
product team what we want and why. Especially for sub-products that we have already in ArgoUML but
also for project that we consider taking in. This is to increase the likelihood that they will have usin
mind when planning and evolving.

Here are the steps to go through and the recommended order once the decision is taken to use the sub-
product in ArgoUML:

Documentation

Describe in the Cookbook in the appropriate subsystem section what part of the problem that the
sub-product solves and how it is used in ArgoUML.

Javadoc

Enter the package list file in a special directory under ar gound / | i b/ j avadocs. Update the list
of links used when building the Javadocs. One place in def aul t. properties, One or two
placesinbui | d. xm (targets javadocs and javadocs-api).

120

Standards for coding in ArgoUML

Test by referencing some class from the sub-product, building the Javadoc, and check that thelink is
working.

* Repository

Assuming that the sub-product is distributed in a set of jar files, add the jar filesto thel i b directory
in a versioned way together with the license file Use filenames like
subproduct - versi on. j ar,and subpr oduct . LI CENSE. t xt .

A future plan is to have each subsystem in their own directory. If the sub-product in question be-
longs to a subsystem that is moved to a separate directory you should put it in thel i b directory for
that subsystem. For the time being, thereisonly onel i b directory.

* Building

Assuming that the sub-product is distributed in a set of jar files, add the jar files to the list of files
that are to be included when building ArgoUML. One place in def aul t. properti es, Four
places in bui | d. xm (targets init (tree places), prerequisites, package (two places), new target
check.subpr oduct), and One possibly place in About Box. j ava (Constructor). Notice espe-
cialy that bui |l d. xml shall not contain any version information. Notice also that the text in
About Box. j ava shall not contain anything that needs to be localized but just the sub-product
name, reference and possibly version.

Check by having some class from the sub-product loaded immediately when starting ArgoUML and
start using build run.

* Running from modules

With the current modules set up (in ar goumr / nodul es) the idea is that we are supposed to be
able to start ArgoUML from any of the modules directory. This means that whenever changing the
list of modules you will have to update the classpaths in al these modules. Go through the list of
filesar goum / nodul es/ */ bui | d. xm and update.

Check by having some class from the sub-product |oaded immediately when starting ArgoUML and
start in each of these directories.

* Distribution

Assuming that the sub-product is distributed in a set of jar files, add the jar files to the list of files
that are to be included when releasing ArgoUML. One place in buil d. xm (target dist-
javawebstart), One place in mani f est . t enpl at e (Class-Path), In each of the Java Web Start
files (resources), Inthe | nf 0. pl i st (ClassPath).

Check by having some class from the sub-product |oaded immediately when starting ArgoUML and

start with java -jar argouml.jar, using each of the Java Web Start files, and from the Appbund (on
aMac).

See Section 11.8, “How to relate issues to problems in subproducts’ for a discussion on how to handle
bugs found in sub-products and updates of the version of a sub-product.

9.4. Settings for Eclipse 2

Linus Tolke

These style guides correspond to the following settings in Eclipse 2:

121

Standards for coding in ArgoUML

In Preferences => Java=> Code Formatter => New Lines

None of the boxes "Insert a new line before opening brace”, "Insert new lines in control statements’,
"Clear all blank lines', "Insert new line between 'else if", or "Insert a new line inside an empty
block" are checked.

In Preferences => Java => Code Formatter => Line Splitting

Maximum line length is 80.

In Preferences => Java => Code Formatter => Style

None of the boxes "Compact assignment” or "Indentation is represented by atab" are checked.

Number of spaces representing a tab: 4. This should probably be read as Number of spaces repres-
enting alevel of indentation.

In Preferences => Java=> Java Editor => Appearance
Displayed tab width: 8
"Insert space for tabs (see Formatting preferences)” checked. There seems to be no way of having

tabs set at width 8 and the indentation level set at 4 at the same time so we must |et Eclipse generate
code without tabs to obey the Sun Coding standard.

9.5. Settings for NetBeans

Linus Tolke

These style guides correspond to the following settings in NetBeans:

In (Tools =>) Options => Editing => Editor Settings => Java Editor
Tab Size=8
In (Tools =>) Options => Editing => Indentation Engines => Java Indentation Engine

Add Newline Before Brace: False, Add Space Before Parenthesis: False, Expand Tabs to Spaces:
False, Number of Spaces per Tab: 4 (Should probably be read as Number of Spaces per indentation
level).

9.6. Settings for Emacs

Linus Tolke

These style guides correspond to the default Java settings in Emacs:

("java"

(c-basic-offset . 4)
(c-conment-only-line-offset 0 . 0)
(c-of fsets-alist

(inline-open . 0)
(toprmost-intro-cont . +)
(statement-bl ock-intro . +)
(knr-argdecl-intro . 5)
(subst at emrent - open . +)

122

Standards for coding in ArgoUML

(label . +)

(statenent-case-open . +)

(statement-cont . +)

(arglist-intro . c-lineup-arglist-intro-after-paren)
(arglist-close . c-lineup-arglist)

(access-1abel . 0)
(i nher-cont . c-l1neup-java-inher)
(func-decl-cont . c-lineup-java-throws)))

9.7. How to work with Eclipse 3

9.7.1.

Linus Tolke

If you are running Eclipse 3 you can find information on how to set the development environment fitting
ArgoUML. There are several sets of instructions here depending that you can apply separately depend-
ing on how much of the ArgoUML knowledge you would want to include in your Eclipse.

If any of these instructions don't work or could be improved in some way, please help in making them
better by contacting the editor of the Cookbook.

Checking out through Eclipse

Thisinstruction is if you want to use Eclipse to download the source and it takes you up to where you
can start ArgoUML from the source.
1. Setupthe CVSRepository.

Change to the CVS Repository perspective and select Add CV'S Repository. Then enter the follow-
ing information.

* Host: cvstigris.org
» Repository path: /cvs
e User:Your Tigris user nane.
e Password: Your Tigris password.
» Connection type: pserver (default)
e Use Default Port. (default)
2. Check out.

In the CVS Repository Exploring perspective, unfold the newly created repository (called
something like :pserver:your user nanme@cvstigris.org:/cvs) and within it, HEAD.

Select the argouml-mdr project, right-click on it, and to Check Out As. Check out as a project con-
figured using the New Project Wizard. Press the button Finish. Select Java Project, and press Next.
Type the new project name: argouml-mdr, and press Next. Ignore the build path settings. We will
come back to them later. Press Finish, which starts the checking out process. Y ou are probably dir-
ected to the Java Perspective with a question if you want or not. At this point, you better press No,
to be able to perform the next step.

Select the argouml project, right-click on it, and do Check Out As. Check out as a project con-
figured using the New Project Wizard. Press the button Finish. Select Java Project, and press Next.
Type the new project name: argouml, and press Next. Ignore the build path settings. We will come

123

Standards for coding in ArgoUML

back to them later. Press Finish, which starts the checking out process. Y ou are probably directed to
the Java Perspective with a question if you want or not. At this point it doesn't matter. Just press
Yesor No!

The download takes awhile, since the download is around 60M eg.

Remark: If you are on a modem or other low bandwidth connection, thisis not recommended since
you will download all of the web site, the source for the documentation, and all modules, things
that you could do without unless you would want to work on them. If you find away to do thiswith
less bandwidth use, please help improving this description. Theoretically we can come down to
around 16Meg which would take around two hours on a 56K modem.

Build using ant.

Browse to ar goum / src_new bui | d. xm , select the bui | d. xn -file, right-click on it, and
do Run As - Ant Build... This pops up the External Tools... pop up with the Targets tab already se-
lected. Select compile (default target in the Targets tab), deselect all other targets and finally press
Run.

Browse to ar goum - mdr / bui | d. xm , select the bui | d. xm -file, right-click on it, and do
Run As - Ant Build... This pops up the External Tools... pop up with the Targets tab already selec-
ted. Select generate, deselect al other targets and finally press Run.

There are some files that are built using rules in the bui | d. xm files. Thisis the antlr-generated
files, the file containing a version, and the java interfaces generated from the mof description.

Refresh the projects.
This must be done after having built using ant to find the newly created Javafiles.

Select the top resource of the argouml project in the Navigator (on the left), right click and select
Refresh.

Set build path for the argouml project.

In the Java perspective, select the project argouml, i.e. the icon at the top of the Package Explorer.
Then, in the menu, select Project => Properties).

Enter Java Build Path

Under Source: Remove everything. Add ar goum / sr c_newand ar goum / src/ nodel / src
(simply add a check mark in front of these folders). Also add ar gouml / t est s, ar goum /
nmodul es/ cl assfil e/ src, and the src directories of al other modules. The purpose of thisis
to have Eclipse recompile these and find compilation errors as soon as your changesto any API has
affected them.

Under Libraries: Press the Add JARs... button and add all filesin ar goum /| i b. Press the Add
JARs... button and add the filear gounml / t ool s/junit-3.7/junit.jar.Every timeany of
these jars is updated in the project you will have to update this in your environment by entering this
dialog, removing the old ones, and adding the new ones.

Under Order and Export: Check that argouml/src/model/src is checked. Check junit and logdj. (If
you also plan to work with the ArgoPrint subproject, check gef and commons-logging.)

Set the Default output folder to ar goum / bi n. This will not confuse it with any of the ant-built
things.

Press OK. You will be asked to accept that all resources previously built can be removed. Press

124

Standards for coding in ArgoUML

Y es. Eclipse will rebuild.

Verify that there are no errors in the argouml project, just warnings left among the problems. If
there are errors in some of the modules you will be able to continue your work in spite of that but it
is better if you stop here and investigate the problem.

Some of the modules (cpp, idl, classfile, ???), contain ANTLR-generated code. The rules to build
these are in the ant files for each module. Run the ant targets "generate" or "generateparser” in each
of these modules and then reload the source trees.

Set build path for the argouml-mdr project.

In the Java perspective, select the project argouml-mdr, i.e. the icon at the top of the Package Ex-
plorer. Then, in the menu, select Project => Properties).

Enter Java Build Path

Under Source: Remove everything. Add ar goum -ndr/src and argoum -ndr/tests
(simply add a check mark in front of these folders).

Under Libraries: Press the Add JARSs... button and add all filesin ar goum - ndr/ | i b. Press the
Add JARs... button and add the filear goum - ndr/ bui | d/ j ava-i nterfaces.jar.

Under Project: Pressthe Add... button and add the argouml project.

Under Order and Export: Check java-interfaces.jar, jm.jar, jmutils.jar,
ndrapi . j ar, nof . jar, nbndr. j ar, and openi de-util .j ar, (i.e. everything except the
argouml project).

Set the Default output folder to ar gound - ndr / bi n. Thiswill not confuse it with any of the ant-
built things.

Press OK. You will be asked to accept that all resources previously built can be removed. Press
Yes. Eclipse will rebuild.

Verify that there are no errors just warnings left among the problems.

Create a Run Configuration

In the Java perspective, select the project argouml, i.e. the icon at the top of the Package Explorer.
Then, in the menu, select Run => Run...). Thiswill open the dialog for creating, managing and run-
ning Run Configurations.

Select Java Application on the left and press the New button. Name the configuration "Run
ArgoUML". In the Main tab press the Search... button in the Main class box. In the new dialog that
appears (Choose Main Type), simply press OK.

This setsthe Main classto: or g. ar gound . appl i cati on. Mai n.

In the Classpath tab select User Entries, press Add Projects, and add the argouml-mdr project with
"Add exported entries of selected projects.” checked and "Add required projects of selected
projects.”" not checked. (The same needs to be done for al other configurations created i.e. when
running test cases from within Eclipse).

Press the Run button. This will start ArgoUML. From now on, you can start ArgoUML by asingle
press on the Run icon in the toolbar.

Verify that you can start ArgoUML from the debugger within Eclipse. Y ou can do this by clicking

125

Standards for coding in ArgoUML

on the Debug icon in the toolbar.

9.7.2. Eclipse to help with the ArgoUML coding style

Thisinstruction is to set up Eclipse to work according to the ArgoUML Coding standards. If thisis not
done correctly you will most likely find that you will have to do alot of manual edits every time Eclipse
has touched the code. You have your tool working against you instead of for you. On the other hand,
these settings affect your Eclipse Workspace rather than the ArgoUML project settings so if you have
other projects in the same Eclipse Workspace there might be conflicts. For this reason, it might be a
good ideato do the ArgoUML work in an Eclipse Workspace separate from your other projects.

* Code conventions.

See in the menu Window => Preferences. Then select Java => Code Style => Formatter. Set the
Code Formatter to "Java conventions [built-in]".

» TAB character widthis 8.
Thiswill only work correctly by default from Eclipse V3.2 onwards.

Solution for Eclipse 3.0: Seein the menu Window => Preferences. Then select Java => Editor. Then
select the tab Appearance. Set the Displayed tab width to 8.

Solution for Eclipse 3.1: In Eclipse 3.1 the Tab size is part of the profile that the Code Formatter
uses. Alas, the "Java conventions [built-in]"-profile contains a bug at this point (ht-
tps://bugs.eclipse.org/bugs/show_bug.cgi7d=104765) so the best solution is to create and use a hew
profile with the fix. In Window => Preferences => Java => Code Style => Code Formatter, set the
Code Formatter to "Java conventions [built-in]" (as above), press "Show", select the "Indenta-
tion"-tab, change "Tab size" to 8, press "Apply”, and give the name Fi xed Java
conventi ons.

* New filetemplates.

See in the menu Window => Preferences. Then select Java => Code Style => Code Templates. At
the right hand side, open the tree for Comments, and set the Code Templates for Overriding methods
to

/**

* ${see_to_overridden}
*/

In the same tree for Code Templates, open the Code node and select New Java Files. Set it to

$$51 d$$

Copyright (c) 2006 The Regents of the University of California. A

Ri ghts Reserved. Perm ssion to use, copy, nodify, and distribute this
software and its docunmentation wthout fee, and without a witten
agreenment is hereby granted, provided that the above copyright notice
and this paragraph appear in all copies. This software program and
docunentati on are copyrighted by The Regents of the University of
California. The software program and docunentati on are supplied "AS
IS", without any acconpanying services from The Regents. The Regents
does not warrant that the operation of the programw |l be
uninterrupted or error-free. The end-user understands that the program
was devel oped for research purposes and is advised not to rely

~— e e e e e e e e~ —
~— e e e e e e e e~ —

126

https://bugs.eclipse.org/bugs/show_bug.cgi?id=104765
https://bugs.eclipse.org/bugs/show_bug.cgi?id=104765

Standards for coding in ArgoUML

exclusively on the programfor any reason. |N NO EVENT SHALL THE

UNI VERSI TY OF CALI FORNI A BE LI ABLE TO ANY PARTY FOR DI RECT, | NDI RECT,
SPECI AL, | NCI DENTAL, OR CONSEQUENTI AL DAMAGES, | NCLUDI NG LCST PROFI TS,
ARI SING QUT OF THE USE OF THI S SOFTWARE AND | TS DOCUMENTATI ON, EVEN I F
THE UNI VERSI TY OF CALI FORNI A HAS BEEN ADVI SED OF THE PGSSI BI LI TY OF
SUCH DAMAGE. THE UNI VERSI TY OF CALI FORNI A SPECI FI CALLY DI SCLAI M5 ANY
WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. THE SOFTWARE

PROVI DED HEREUNDER IS ON AN "AS | S" BASIS, AND THE UNI VERSI TY OF
CALI FORNI A HAS NO OBLI GATI ONS TO PROVI DE MAI NTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MCDI FI CATI ONS.

D N S N N
D N S N N

package_decl ar ati on}

${
${t ypeconment }
${type_decl arati on}

9.7.3. Eclipse to automatically find problems in the code

Thisinstruction is to set up Eclipse to automatically find what, in the ArgoUML project, could be con-
sidered problemsin the code.

You can apply these individually depending on what level of help you need in your coding. | (Linus
Tolke) recommend that you set them all on the Warning level. This makes them visible for you. Y ou can
then decide to fix them or not depending on how you feel about the code you are working with.

e Compiler compliance level.

See in the menu Window => Preferences. Then select Java => Compiler. At the right hand side, se-
lect the tab Compliance and classfiles => Compiler compliance level: 1.4.

In the ArgoUML project we have decided to keep source compliance to JDK 1.4. (See Section 3.3.1,
“Choice of JRE: ArgoUML will support any JRE compatible with a Sun specification of any JRE
from Sun that has not begun the Sun End of Life (EOL) process.). This setting enables Eclipse to
tell you where some JDK 1.5 features have crept in.

» Find forgotten and incorrect Javadoc comments.

In the menu select Window => Preferences. Then select Java => Compiler. Suggested settings for
these tabs (Only things diverting from the Eclipse defaults are listed):

« Javadoc => Malformed javadoc comments: Warning, Private, Report errorsin tags.

e Javadoc => Missing javadoc tags. Warning, Protected, Check overriding and implementing
methods.

These problems are aso found by Checkstyle so if you are running checkclipse (See Sec-
tion 9.7.4, “ Settings for checkclipse”) put thisin Ignore instead.

* Codethat hides other code.

In the menu select Window => Preferences. Then select Java => Compiler. Suggested settings for
these tabs (Only things diverting from the Eclipse defaults are listed):

e Style=> Possible accidental boolean assignment: Warning.

127

9.7.4.

9.7.5.

Standards for coding in ArgoUML

» Advanced => Local variable declaration hides another field or variable: Warning.
e Advanced => Field declaration hides another field or variable: Warning.
» Find Code that shall be removed.

In the menu select Window => Preferences. Then select Java => Compiler. Suggested settings for
these tabs (Only things diverting from the Eclipse defaults are listed):

e Unused code => Local variableis never read: Warning.

e Unused code => Parameter is never read: Warning.

e Unused code => Unused or unread private members: Warning.

* Unused code => Unnecessary semicolon: Warning.

¢ Unused code => Unnecessary cast or 'instanceof' operation: Warning.

* Unused code => Unnecessary declaration of thrown checked exception: Warning.

Settings for checkclipse

Checkclipse isaplug in for Eclipse which needs to be installed separately. It enables style checking ac-
cording the rules set for the ArgoUML project.

In the Java perspective, select the project argouml, i.e. the icon at the top of the Package Explorer. Then,
in the menu, select Project => Properties, select Checkclipse (appears only if Checkclipseis correctly in-
stalled) and then fill the fields like this:

» Enable Checkstyle Checked.

e Checkstyle Configuration File: /
argound / t ool s/ checkstyl e/ checkstyl e_argoumn . xm

» Checkstyle PropertiesFile: / ar gourd / t ool s/ checkst yl e/ checkstyl e. properties

e FileFilter Definition: / ar goum / t ool s/ checkstyl e/ checkclipse.filefilters

L eave the two other fields empty.

Run the JUnit tests

The problem is that to run ArgoUML, you need to have jars from both the argouml project and the
argouml-mdr project available in the class path. If you don't, then all tests that actually do something
with the model subsystem will fail withaj ava. | ang. ExceptionlnlnitializerError (ifitis
thefirst test) or j ava. | ang. NoCl assDef FoundErr or .

The way the two projects are set up it is the argouml-mdr project that depends on the argouml project.
This means that when running things from the argouml-mdr project everything from the argouml project
is available but not the other way around. Since the tests are located in the argouml project, the argouml-
mdr things will be missing when running the tests as defaullt.

Here isthe simplest way to run atest, fixing this:

128

Standards for coding in ArgoUML

1. Start the test in the normal way i.e. Right click on the test case and select Run As => JUnit Tedt,
Debug As=> JUnit Test or some keyboard short cut.

2. Watch asthetest failswithj ava. | ang. ExceptionlnlnitializerError

If the test happens to succeed, either you have chosen one of the rare tests that actually don't use the
model, or you have not set up the two projects according to the instructions...

3. From the Toolbar or from the Run menu select Debug... or Run... A window will open with the
Configuration to run the test.

4. Change the project to the argouml-mdr project (in the Test tab).

5. Press Debug (or Run).

6. Thetest now works.

Eclipse will remember the Configuration for that test so you can run it from the Debug or Run Toolbars,
the Run => Run History or Run => Debug History menu items, Right clicking on the same test and se-

lecting Run... or Debug.... But if you do Right click on the same test followed by Run As... or Debug
As... anew Configuration will be created that has the default project once again.

129

Chapter 10. Standards For
Documentation Writing

10.1. Introduction

The documentation (currently manual, cookbook, and quickguide) is written using DocBook
XML V4.1.2 [http://lwww.oasis-open.org/docbook]. This section covers some conventions for use of
DocBook and for the documentation in general. It also includes some information for tooling configura-
tion, e.g. for Emacs with the psgml package.

10.2. Style

"We" in the documents means the persons reading the document. For the Quick-guide and User
Manual this means the user using ArgoUML. For the Cookbook this means the developer working
with improving ArgoUML.

e "I" in the document refers to the author and is only used to denote the authors persona opinion.
Avoid usingit!

* Usetheactive voice.

e Useplain rather than elegant language.

* Use specific and concrete terms rather than vague generalities.

» Break up your writing in short sections. Each section dealing with one topic.
» Usethe present tense.

e Opt for aninformal rather than aformal style.

10.3. Document Conventions

» All titles of chapters, sections etc. are capitalized throughout.
« All titlesof figures, tables etc. have the first word only capitalized.
» Spelling is US English. (According to The Webster's Second Unabridged.)

e Usefull URLsthroughout all documents! Rationale: These documents may also be published in oth-
er formats then html on the ArgoUML web site.

» Do not include lists of what changes have been done to the files. This information is kept by CVS,
the version control tool. This is changed since Jeremy Bennet did the work for the 0.9/0.10 User
Manual and there might still exist such lists. Remove them while changing the files!

The Cookbook has a Change Log (See Change Log) that is updated for every significant change but
that isfor the purpose of making it easier for the readers.

* When problems in the current implementation of ArgoUML are mentioned or perhaps even emphas-

130

http://www.oasis-open.org/docbook
http://www.oasis-open.org/docbook

Standards For Documentation Writing

ized using the war ni ng tag, include the issue number in a sgml-comment in the source so that it is
easy to know if this problem has been fixed when revising the document. The issue should be men-
tioned in the format “issue xxx”, i.e. there should only be a space between the word “issue” and the
issue number. This allows the tigris web site to generate links when viewing the manual source.

» Do not write "currently". Better write either "in version 0.14" if you mean in the stable version 0.14
of ArgoUML or "in version &argoversion;” if you mean in the current version of the document as
defined in def aul t. properti es when the document is deployed. There are some old refer-
encesto "current” or "currently” also. If you encounter them, try to remove them!

» For documents that contain an “index”, Add indexterms while doing changes. Creating the index is a
good idea and we eventually should have indexterms all over. Initially, the manual was written
without useing indexterms at all. They have been added generously on certain parts but that makes
theindex strangely biased.

Capitalize the part of the indexterms that are terms.

Don't use the tertiary level of the index terms but use only two alternatives: Only primary, and
primary/secondary. If you are unsure when to use primary or primary/secondary use the small word
approach. |.e. if the indexterm contains a small word (typically to, of, for, in) and normally not capit-
alized, let the secondary start with that small word.

When using primary/secondary, see that you get the same kind of word as used before in the index
(especially when it comes to differences in singular/plural-form). Also create other indexterm by
turning the phrase to as many permutations that you can think of.

10.4. DocBook Conventions

» The top level document of the document is in docunent name. xm . Each chapter (or preface,
glossary, appendix etc) is a separate file, defined as a system entity and included from this top level
file.

» There are some useful entities defined for common terms in the beginning of this top level docu-
ment.

E.g. use of &ar goum ; will ensure consistent naming of the product (ArgoUML) and allow us to
changeit later (to Argo/UML, Argouml or whatever).

In the build script there is some magic that transates @tagname@ to a real value. E.g.
@VERSION@ inthedocunent nane. xnl fileinto 0. 16.

» XML comments are used throughout to explain what various sections are trying to achieve.

» Cross-referencing requires use of i d. attributes. Many of these used in the manual are of the fol-
lowing format, but the use of thisformat is not obligatory any more.

To avoid confusion, use a prefix of ch. for chapt er, app. for appendi x, s. for sect1
throughsect 5,fi g. forfi gure,tab. fortabl e andgl forgl ossentry.

A second prefix of t ut. orref. isallowed to distinguish tutorial and reference material. The re-
mainder of the tag should be descriptive, but concise with words separate by underscore. Where a
graphic is involved this remainder should correspond to the file name. For example
fig.ref. navigation_pane for afigure showing the explorer, with the diagram in navi ga-
tion_pane.gif

There is one exception to this and that is the description of the critics in the manual. Each paragraph

131

10.5.

Standards For Documentation Writing

about a critic is instead marked with cri ti cs. followed by the classname implementing that crit-
ic. The reason for thisis that the intention is to have the manual accessable when pressing the Help
button on that critic. Generating a link to the correct place in the manual is easier if the classname
need not undergo some kind of textual transformation and the implementation doesn't care if a a spe-
cific critic is described in asect 1, sect 2, sect 3, or sect 4. Reorganizing the manual would
otherwise affect also the java code. The conversion to the correct tagname or really the correct URL
is currently implemented in the defaul t Morel nf oURL() method in the
org.argoum . cognitive.critics.Criticclass

e Only use glossterm (for the term or its abbreviation/acronym), gl ossdef and
gl ossseeal so within gl ossent ry. Other entries are not implemented in the style sheets and
so do not appear in the glossary!

» Use spaces rather than tabs. Tabs are generally set so large the text moves over to the right of the
page, and are not set the same everywhere (emacs uses 8 spaces, some MS editors use 6 spaces),
making documents unreadable between users.

* Theindentation sizeis 2.

» Make a new line after each sentence or before expressions. The Docbook source is source that is
handled by CVS. When structuring the text the parts are paragraphs, sentences and words. By having
each sentence on aline of itsown it is easier to see what sentences has been changed and what has
not in the di f f reports from CVS. The contributions that Jeremy Bennet did for the 0.10 User
Manual are not written like this. Change it while changing the paragraphs.

» All block graphics should be encapsulated within f i gur e, allowing reference from around the text.
Set attribute f | oat to 1to alow the figureto float (makes life easier for printed version).

» All block graphics should be provided through nedi aobj ect and provided with both an i m
ageobj ect and comprehensive description in at ext obj ect . This gives the potentia of mean-
ingful content where a diagram cannot be displayed for any reason. Where appropriate the ne-
di aobj ect should be wrapped by scr eenshot .

* Inline graphics can be done through i nl i negr aphi c, rather i nl i nenedi aobj ect . A textua

aternativeis of little value in these circumstances. Where appropriate the medi aobj ect should be
wrapped by gui i con

For Emacs Users

If you use the psgml library within emacs, then editing and verifying XML gets easier. Information on
using thisfacility isinluded with psgml.

» Emacs local variables appear in afew lines of comment at the bottom of each XML file. Please don't
delete these!

* Adding (setq sgnl-set-face t) toyour. enacs filewill cause al tags and entities to ap-
pear in boldface.

e Adding (setq sgm -auto-activate-dtd t) toyour.enmacs file will ensure the Doc-
Book DTD is parsed as soon as the fileis |oaded.

132

Chapter 11. Processes for the
ArgoUML project

This chapter contains processes used when working with the ArgoUML project.

These processes are provided with the hope of being helpful for the members of the project and if they
feel too complicated, ambitious or overworked, please raise the issue of simplifying them on the de-
velopers mailing list [mailto:dev@argouml.tigris.org].

11.1. The big picture for Issues

Here isthe big picture of the life of an Issue.

- Note

Since October 2005, new issues are created in the UNCONFIRMED state instead of the
new state. This picture and the processes around the issues are not yet updated.

133

mailto:dev@argouml.tigris.org
mailto:dev@argouml.tigris.org

Processes for the ArgoUML project

The Report gtes the |ssue

Hew Reopened

e

Rezalver resery i or himzself

ound the solution

Resolver has found that this is the same as some other issue

Resolver commits a solgtion .
EESNM found that no change is needad

f;tegulved.fFixeh r;esnlveannmsfnma f;tegnlved.flnxralih ﬁesnlvedhﬂl‘nrﬂfih (Remlved.l’l]uplicata

Acrelease is made an “erifier uses that relaash)

The “arfier thinks the resalution does not salve the problem

alution solves the problem

The “werfier thinks the The “erifier does not agree_

“werified

The “warfier agrees with the Resalver about the resalution
The Reparter sfpechks the resolution

The Reporter does not accept the resolution

The Reporter pt= the resolution

11.2. Attributes of an issue

This is what the different attributes mean and how they are used in the ArgoUML project. Thisisto be
read as an addendum to the Tigris definition of the resolutions

[http://argouml.tigris.org/project/wwwi/docs/issue _lifecycle.html] and for that reason it is hot a complete
list.

11.2.1. Priorities

The priorities are used in the following manner in ArgoUML.:

e P1-Fatd error

These issues are blockers for all releases.

134

http://argouml.tigris.org/project/www/docs/issue_lifecycle.html

Processes for the ArgoUML project

Examples: ArgoUML cannot start; Crashes program, jvm or computer; and Significant loss of user
data.

* P2- Seriouserror

These issues are blockers for stable releases.

Examples: Information lost.
* P3- Not so serious error

Examples: Functions not working; Strange behavior; and Exceptions logged.
» P4 - Confusing behavior

Examples: Incorrect help texts and documentation; Inconsistant behavior; Ul not updated; and I ncor-
rect javadoc.

e P5-Small problems

Examples: Spelling errors. Ugly icons. Excessive logging. Missing javadoc.

11.2.2. Resolutions

* LATER

Used to denote that a certain issue cannot be resolved until some special upcoming and planned-for
event has happened. The event in question is noted in the target milestone.

Events can be things like, dropping support for a jdk version, changing the version of UML that we
support, or replacing some central mechanism within ArgoUML. Once they have a target milestone
registered, they are considered events.

« REMIND

Not used.

Rationale: Each issue have basically four states:

1. NEW/STARTED/REOPENED - To be resolved
2. RESOLVED - To be verified

3. VERIFIED - To be closed

4. CLOSED - Finished.

The statistics is based on this and persons looking for issues to resolve look among the "To be re-
solved"-group (the web pagesto help in this are set up in thisway). Thisis aso in synch with our re-
|ease process.

Looking at it from a single persons perspective an issueis either a"l could work with thisissue but |
currently don't", "I work with this one", or "I am now done with my work on this issue". For a re-
solver this is corresponds to NEW/REOPEN for the first group, STARTED for the second and RE-

135

Processes for the ArgoUML project

SOLVED for the third. For a verifier this corresponds to RESOLVED for the first group and VERI-
FIED for the third group.

The RESOLVED/REMIND does not fit this. They risk to be verified because the rest of our process
urges people to resolve issues that are RESOLVED in which case they are probably lost. They risk
to be hanging in the RESOLVED state because nobody understands where they should go from
there. It is not clear who is responsible to move them forward. The person that "resolved" them or
someone else. Someone risk to think that there is nothing left to do since it is resolved and if so his
options of doing work are reduced which could lead to that he actually does less with ArgoUML
than he else would.

To amend this we have made two things:
1. Decided that we don't use the RESOLVED/REMIND states.

2. Atevery release, as part of the release process, clean up issues that for some mysterious reason
ended up in these states (See Section 2.8, “Making arelease’, 10, f)

If you plan to solve an issue now, assign it to you, start it, and set the target milestone to the release
you plan to have it solved. Thiswill signal to everyone that you have the responsibility, will pursue
it, and your time plan.

If you don't plan to solve this now, leave it in the "up for grabs'-pile (as not resolved). Somebody
else might want to work with it.

If you know that an issue cannot be resolved now because it requires that another issue is solved be-
fore, register the other issue as "depends on" and leave the issue in the "up for grabs'-pile (as not re-
solved).

If you know that an issue cannot be resolved now because it requires some big event to take place,
put the milestone for that event in the target milestone and resolve the issue as RESOLVED/LATER.

* WORKSFORME
This meansthat it worksin areleased version of ArgoUML. State the version in the comment.
If the version stated by the reporter in the issue is not the same as the version in the comment then

this probably means that problem was fixed in some release without anyone noticing that this prob-
lem was fixed.

11.3. Roles Of The Workers

The roles described below are per issue, i.e. for every issue, thereis at least a reporter, aresolver and a
verifier. Hence, each person involved in issues for the ArgoUML project can - at the same time - have
different roles, and consequently, has issues to report, issues to close, issues to resolve, and issues to
verify.

11.3.1. The Reporter

The Reporter is the person who enters the issue in I ssuezilla.

Skills: The reporter isan ArgoUML user, should not need any knowledge of what the ArgoUML project
isactually doing.

136

Processes for the ArgoUML project

Responsibilities:

Report an issue

The address to enter new issues is: http://argouml.tigris.org/issues/enter bug.cgi
[http://argouml.tigris.org/issues/enter_bug.cgi]. For entering new issues, registering (as described in
1.3) isnot required.

Answer clarification requests

Occasionally, the devel opers of ArgoUML need to request the Reporter more information, to be able
to solve the issue correctly. Another way of putting it isto say that if the issue was reported without
some vital information the Reporter has some more work to do.

Close theissue

This applies to an issue that is in verified state only. At the end of processing the issue, the reporter
has the final word: he can check the result, and if he agrees with the solution, close the issue himself.
Closing an issue requires at least "observer" role in the ArgoUML project.

Reopen the issue

This applies to an issue that is in verified state only. The reporter has the final word: he can check
the result, and when he does not agree that the solution is correct, he can reopen the issue himself.
Reopening an issue requires at least "observer” role in the ArgoUML project.

11.3.2. The Resolver

The Resolver is the software devel oper who attempts to resolve the issue. Doing so requires at least "ob-
server” role. The "developer” role is only needed to commit things into CV'S (e.g. submit changed Java
code, scripts or documentation).

Remark: Someone who does not have the developer role, but solves the issue and convinces someone
else to commit the solution, is till the Resolver even though he cannot commit thingsinto CVS.

The goal of the Resolver is to progress the issue to the status of "Resolved". The resolver may be the
same person as the reporter.

Responsibilities:

Decide usefulness (if thisissue isreally abug or enhancement and if it is worth solving)

The Resolver has to decide if solving the issue is really a useful improvement for ArgoUML. The
Reporter of the issue may very well be mistaken in entering a bug-issue for what isin fact a feature,
or entering an enhancement-issue which is not really an enhancement. Another thing that could beis
a bug that appears in very exceptional circumstances and that may have large impact on ArgoUML
architecture. If the Resolver decides after the investigation that this bug is really not that important
or that he is not the right person to solve it he enters his findings as a comment and assigns the issue
back to anyone (issues@argouml) and moves along to work on another issue instead.

If applicable, program and test a solution

As this might take considerable time it might be a good idea of the Resolver to assign the issue to
himself to reserve the issue. He can also signal progress by setting the issue to the state Started.

If applicable, write test cases

137

http://argouml.tigris.org/issues/enter_bug.cgi

Processes for the ArgoUML project

* Settheissuein the end on "Resolved".
When the resolver is finished with the issue, he putsit in "Resolved” status, and indicates the "resolu-
tion" is Fixed, Worksforme, Invalid, Wontfix, or Duplicate.

Skills: The resolver needs to know a lot of the insides of the ArgoUML code, Java, coding standards,
and also the current status of the project with goals, requirements and release plans.

11.3.3. The Verifier

The Verifier may be neither the Reporter, nor the Resolver of the issue. The task of the Verifier is to
check the quality of the solution by confirming that the solution is complete, to the point, bug-free, etc.
This is an important part of the quality assurance work we do in the ArgoUML project and the object is
to make sure that aresolved issueisin fact resolved.

The test must be done on the "Target Milestone” version of the issue, or any later version released to the
public.

Responsibilities:

* Check that the issue is solved in the stated version of ArgoUML
* Mark theissue as "verified"

If the Verifier can conclude that the problem does not exist or the feature/enhancement is now
present the issue is marked as verified.

* Reopen theissueif the solutionis not fully correct
If the solution is not correct or the feature/enhancement does not work, it is the duty of the Verifier

to reopen the issue.

Skills: The verifier needs only to focus on that issue, how the problem in it is formulated. He doesn't
need to know how it is actually solved.

11.4. How to resolve an Issue

This can be performed by any member of the project (any role). Persons without the Devel oper role need
a person with the Developer role to actualy commit the work if the resolution involves changing some
artefact. There might be special skillsinvolved but it differs widely depending on the nature of the Issue.

Do the following:

1. Pick any Issue that is NEW or REOPENED that you from the description think that you are able to
solve. Best result if you also find some Issue that you really feel needs to be solved. The list of all

of them
[http://argouml .tigris.org/issues/buglist.cgi 2component=argouml & issue_status=NEW& issue_status
=REOPENED].

2. Look at your personal schedule and how much time you have during the next couple of weeks and
compare that to the amount of time you think you will need to spend for solving the issue. Compare
this to the release plan to see what release your contribution will fit in.

3. Accept the Issue and reserve it by assigning it to yourself. Set the Target Milestone to the release

138

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED

Processes for the ArgoUML project

you have chosen.

4. Make sure you have a checked out copy of ArgoUML or else check out a new one.
How thisis done is described in Chapter 2, Building from source.

5. Mark theissue as Started (this could be done while assigning also).

6. Change the code to solve the problem.

7. Compile and test your new code.

This should include developing a JUnit test case to verify that the problem is solved. You could
also develop the JUnit test case before actually solving the problem.

If your solution did not work as intended, continue changing it until it does.

If you feel that your estimation of the complexity of the problem and your own abilities and time
available was incorrect, then change the Target Milestone of the Issue to another one that fits your
new estimation. Thisisjust achange of plan.

If you, at this point, feel that your personal plans have changed so that you won't have time to pur-
sue the work, change the Issue back to "NEW" with your experiences sofar stated in the comment.
This means that you are giving up and giving the Issue back to anyone. You should also assign it
back to issues@argouml or if you know someone else in the ArgoUML team that will continue the
work, assign it to him. Remember not to commit your changes in the main branch but please com-
mit your changes (if any) into awork branch and state the name of the branch in the issue. That will
make it possible for someone to make use of your work so far.

8. Commit your changes and the JUnit test cases stating the number of the Issue in the comment.

If you don't have a developer role in the project, this involves sending your changes to someone
who has and then convincing him to commit them for you.

9. "Resolve" the Issue with the resolution "FIXED".

10. Sit back and feel the personal satisfaction of having completed a something that will be part of the
ArgoUML product.

11. If you during this, have discovered other problems, create new Issues stating those new problems
according to the rule for creating | ssues.

11.5. How to verify an Issue that is FIXED

This can be performed by any member of the project (any role). There might be specia skills involved
but it differs widely depending on the nature of the Issue.

Do the following:

1. Pick any Issue that is RESOLVED/FIXED or WORKSFORME and that you have not raised, nor
solved and that is included in arelease (Target milestone set to a release available on the site). The
list of all RESOLVED/FIXED and RESOLVED/WORKSFORME issues
[http://argouml .tigris.org/issues/buglist.cgi ?component=argouml & issue_status=RESOL VED& resol
ution=FI X ED& resol ution=WORK SFORME].

2. Run the specified release of ArgoUML. You can also use any later release. Use ArgoUML

139

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=FIXED&resolution=WORKSFORME

Processes for the ArgoUML project

provided for downloads or through Java Web Start.

3. Test the problem in the issue and verify that the problem is no longer there or the feature is
provided.

4. Do one of thefollowing:

« If the problem is gone, the feature is present put the Issue in Status VERIFIED and add the ver-
sion of the ArgoUML used for the test in in the comment.

Remark: As an additional activity, the verifier may check if the manual needs to be adapted,
and if so, may REOPEN the issue with an explanation text, and setting the correct subcompon-
ent (Documentation & Help).

« If the problem is till there, the feature does not work, put the Issue in Status REOPENED with
a description of what is till there, is still missing. Also state what version of ArgoUML used
for the test in the comment.

5. If you during this, have discovered other problems than the one stated in the Issue, create new Is-
sues for those new problems according to the rule for creating | ssues.

6. Do thisasmany timesasyou like until there are no Issues | eft.

11.6. How to verify an Issue that is rejected

This can be performed by any member of the project (any role). There might be special skills involved
but it differs widely depending on the nature of the Issue.

Do the following:

1. Pick any issue that is RESOLVED/(INVALID, WONTFIX, or DUPLICATE) that you have not
raised nor solved. The chosen issue need not be connected to an available release. The list of all
RESOLVED/INVALID, RESOLVED/WONTFIX and RESOLVED/DUPLICATED issues
[http://argouml.tigris.org/issues/buglist.cgi ?component=argouml & issue_status=RESOL VED& resol
ution=INVALID& resolution=WONTFI X & resolution=DUPLICATE].

2. Read through the description provided.

3. Do one of thefollowing:

« If you agree with the statement and feel that the rejection is done for correct reasons, put the Is-
suein Status VERIFIED.

< If you don't agree, put the Issue in status REOPENED and give a description as to why you
don't agree.

4. Do thisasmany timesasyou like until there are no Issues left.

11.7. How to Close an Issue

This is performed by the person that originally raised the Issue or by the QA responsible for that area.
Y ou need to be a member of the project (any role). This can also be done by someone who would raise
theissue but did not because it was already present in Issuesilla

140

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resolution=INVALID&resolution=WONTFIX&resolution=DUPLICATE

Processes for the ArgoUML project

1. Pick any Issue that is Verified and that you have raised or that you have found and refrained from
raising because somebody else already had written it. The list of al VERIFIED issues
[http://argouml.tigris.org/issues/buglist.cgi?component=argouml & issue_status=VERIFIED].

2. Seethat you are satisfied with the solution. This could involve reading through the resolution and
starting the tool to verify it.

3. Do one of the following:
« If you are satisfied, put the Issue in Status CLOSED.

« If you are not satisfied but the problem is solved as it is written in the Issue, put the Issue in
Status CLOSED and open a new Issue with the rest of the problem.

» If you are not satisfied and the problem is not solved, put the Issue in status REOPENED with a
description on what you are not satisfied with.

11.8. How to relate issues to problems in sub-
products

ArgoUML uses products internally and is very dependant on that these products are functioning well.
This are products like GEF, NS-UML, ocl, logdj, xerces, jre, ...

Occasionaly a problem found in ArgoUML is found to be a problem in one of these subproducts and
cannot or is extremely complicated to fix within ArgoUML.

If this happensthisis the way to handle this problem.

This can be performed by any member of the project (any role). There might be specia skills involved

depending on the nature of the problem. In this description "issue" means a issue in issuezilla, "bug re-

port" means a bug report in some other project, and "problem” denotes the conceptual problem.

Do the following:

1. During your examination of an issue you find that the problem is in one of the ArgoUML sub-
products (GEF, NSSUML, odl, jre, ...).

2. Make surethat the issueis assigned to you.

3. Write acomment in the issue stating which one of the subproducts that has the problem (and what
the problem is within that subproduct).

4. Post a bug report in that subproducts bug reporting tool (or find that a bug report aready re-
gistered).

| am assuming that there is such atool for the subproduct in question. If there isn't, then make the
bug report to the person responsible for this product so that we are sure that the problem is commu-
nicated.

5. Accept the issue (set it to STARTED) and enter the reference from the subproducts bug reporting
tool and if possible the URL to the bug reporting tool or to the bug report in question.

| am assuming that there is a bug reporting tool for the subproducts. If there isn't for the product in
guestion, then include all communications (both ways) in the issue.

141

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED

Processes for the ArgoUML project

Y ou are now responsible to follow up on the upcoming releases of the subproduct. If you don't think that
you are the best person for this (you should be since it was you that found that this problem isin the sub-
product), assign the issue to "the right person”. To follow up you should do the following.

1. Look at each new release of that subproduct to see if the bug report isin fact stated as fixed in that
release.

2. If the bug report is fixed, then you weight together the importance of the problem, other bug reports
that are also problemsin ArgoUML that are solved in that release, the amount of work needed to fit
the new version of the subproduct instead of the old one, the planned releases of the subproduct
with promises to solve other bug reports, and the current release plan of ArgoUML. From this you
decide wether it istime to do the update of the subproduct within ArgoUML or to wait.

3. If you decide that it is time to update, you assign all issues against that subproduct to you (if not
aready), then you do the work. The work is to add the new version of the subproduct to ArgoUML,
do all the needed work within ArgoUML to fit the new version, test and commit everything, put the
issues indeed fixed in RESOLVED/FIXED, and close the bugs registered in the subproducts bug
reporting tool.

142

Index

A
Ant, 6
ANT, 8
how it isused, 8
Ant target
clean, 14
docs, 20
guitests, 14
list-property-files, 10
prepare-docs, 11
run, 10
run-with-test-panel, 14
tests, 14
ANTLR, 6
ArgoUML Design, 32
argouml.build.properties, 10

B

build.properties, 10

build.xml , 8

Building
ArgoUML, 8
Javadoc, 11
tools, 5

C

Check lists, 45
Checking out from CVS, 7
clean ant target, 14
Code Generation, 71
Code generation
Java, 72
Coding Standards, 116
Compiling
customized, 10
Cygwin, 10
Unix, 9
Windows, 10
component, 32
Constraints, 92
Contents of the CV S repository at Tigris, 112
Critics, 45
CVs
branches, 109
checking out from, 7
how to work with, 108
Mailing list, 4
standards, 108
CV S repository contents, 112
Cygwin Compilation, 10

D

default.properties, 10
Details Panel, 76
Developers Mailing List, 4
Diagrams, 50
DocBook, 6
docs ant target, 20
Documentation, 20

work with, 21
Dresden OCL Toolkit, 92

E
Explorer, 87

F
fop, 6

G

GEF, 7
GUI Framework, 76
guitests ant target, 14

H
Help system, 77

118n, 78
i18n teams, 78
Internationalization, 78
Internationalization teams, 78
Issue
Priority, 134
Resolution, 135
Issues, 133
Closing, 140
Mailing list, 4
Resolving, 138
Resolving Duplicate, 140
Resolving Invalid, 140
Resolving Rejected, 140
Resolving Wontfix, 140
Verifying Fixed, 139

Verifying WORK SFORME, 139

J

Jason Robbins
Dissertation, 145

Java, 72

Javadoc building, 11

JDepend, 6

Jimi, 6

JUnit, 6

JUnit testing, 14

L
L10n, 78
Language teams, 78

143

Index

list-property-files ant target, 10 Coding, 116
Localization, 78 CVS, 108
LOG, 83 subproducts, 141
logdj, 7 subsystem, 32
Logger, 83
Logging, 82 T
Test cases
M an example, 16
Mailing lists, 4 writing, 14
Making arelease, 22 Testing ArgoUML, 14, 14
Martin Skinner tests ant target, 14
Dissertation, 145 To Do Items, 87
Model, 38 Tools
Module loader, 90 needed for building, 5
used, 6
N Trandators, 78
Navigator Tree, 87 Troubl eshopn ng
Notation, 50, 69 committing changes, 14
NSUML, 7 dev_elopment build, 13
understanding, 100 during the rel ease work, 26
0O U
Object Explorer, 87 Un@t testing of ArgoUML, 14, 14
OoCL, 92 unix
compilation, 9
P Vv
sistence, 68 o
Verifying

Pluggable interface, 90

prepare-docs ant target, 11 Works for me Issues, 139

Priorities

on Issues, 134 W
Processes, 133 Web Site
Property panels, 54 documentation, 20
PropertyResourceBundles, 78 maintaining, 19

Windows
R Compilation, 10
; Wizards, 45

Si?ls&ioéz contents, 112 qukers, 136

of Issues, 135 Writing test cases, 14
Resolving

Duplicate Issues, 140 X

Invalid Issues, 140 XSL style sheets, 6

Rejected Issues, 140

Wontfix Issues, 140
ResourceBundles, 78
Reverse Engineering, 71

Java, 72
Roles, 136
Round-trip Engineering

Java, 72
run ant target, 10
run-with-test-panel ant target, 14

S
Saving/Loading, 68
Standards

144

Appendix A. Further Reading
A.l. Jason Robbins Dissertation

A.1.1.

A.1.2.

Cognitive Support Features for Software Development Tools

The dissertation of Jason Raobbins is a MUST READ for everyone concerned about ArgoUML. Be care-
ful though, sinceit is based on an old version of ArgoUML, but many of the concepts remain intact.

Abstract

Software design is a cognitively challenging task. Most software design tools provide support for edit-
ing, viewing, storing, sharing, and transforming designs, but lack support for the essential and difficult
cognitive tasks facing designers. These cognitive tasks include decision making, decision ordering, and
task-specific design understanding. To date, software design tools have not included features that spe-
cifically address key cognitive needs of designers, in part, because there has been no practical method
for developing and evaluating these features.

This dissertation contributes a practical description of several cognitive theories relevant to software
design, a method for devising cognitive support features based on these theories, a basket of cognitive
support features that are demonstrated in the context of a usable software design tool called ArgoUML,
and a reusable infrastructure for building similar features into other design tools. ArgoUML is an object-
oriented design tool that includes several novel features that address the identified cognitive needs of
software designers. Each feature is explained with respect to the cognitive theories that inspired it and
the set of featuresis evaluated with a combination of heuristic and empirical techniques.

Where to find it

LINK: Raobbins Dissertation [http://argouml.tigris.org/docs/robbins_dissertation/]

A.2. Martin Skinners Dissertation

A.2.1.

Enhancing an UML Modeling Tool with Context-Based Constraints for Components

Abstract

Noch vor der Erstellung eines detaillierten Entwurfs hilft ein Spezifikationsmodell eines komponenten-
basierten Systems dabei, Probleme so frih im Entwicklungsprozess wie moglich zu entdecken. Die
Sprache CCL (‘Component Constraint Language') wurde bei CIS entwickelt und erlaubt den Entwickler
'‘Contextbased Constraints dem Spezifikationsmodell hinzuzufiigen. Dadurch entsteht ein Modell, das
Uber die Beschreibung der statische Struktur des Systems hinausgeht. Zur Zeit existiert alerdings kein
Werkzeug, dass das Komponentenspezifikationsmodell in den Entwicklungsprozess integriert. Ziel
dieser Diplomarbeit war der Entwurf eines solchen Werkzeugs, um die Philosophie des Continuous
Software Engineering (CSE) zu unterstiitzten.

Before starting a detailed design, a specification model of the component-based system assists the soft-
ware developer in early problem detection as soon as possible in the development process. The Compon-
ent Constraint Language (CCL) developed at CIS enables the developer to add context-based constraints
(CoCons) to a component specification model. This produces a model which goes beyond the simple de-
scription of the system's static structure. At this time, there is no tool to integrate the component spe-
cification model into the development process. The goal of this master's thesis was to design such atool,
thereby supporting the Continuous Software Engineering (CSE) philosophy.

145

http://argouml.tigris.org/docs/robbins_dissertation/

Further Reading

A.2.2. Where to find it

LINK: Martin Skinners dissertation
[http://www.cocons.org/publications/CCL _plugin_for_ArgoUML.pdf]

146

	Change Log
	Chapter 1. Introduction
	1.1. Thanks
	1.2. About the project
	1.3. How to contribute
	1.4. About this Cookbook
	1.4.1. In this Cookbook, you will find...
	1.4.2. In this Cookbook, you will not find...

	1.5. Mailing Lists

	Chapter 2. Building from source
	2.1. Quick Start
	2.2. Preparations
	2.2.1. Which tools do I need to build ArgoUML?
	2.2.2. Which tools are part of the ArgoUML development environment?
	2.2.3. What libraries are needed and used by ArgoUML?

	2.3. Download from the CVS repository
	2.4. Build Process
	2.4.1. How ANT is run from the ArgoUML development environment
	2.4.1.1. Compiling for Unix
	2.4.1.2. Compiling for Windows
	2.4.1.3. Customizing and configuring your build
	2.4.1.4. Building Javadoc
	2.4.1.5. Building one of the modules

	2.4.2. Developing in a subproject
	2.4.2.1. The sub-project's relation to ArgoUML
	2.4.2.2. Working in a subproject
	2.4.2.3. Targets in build.xml in a subproject

	2.4.3. Troubleshooting the development build
	2.4.3.1. Compiling failed. Any suggestions?
	2.4.3.2. Can't commit my changes?

	2.5. The JUnit test cases
	2.5.1. How to write a test case
	2.5.1.1. About the Test case Class
	2.5.1.2. About the Test case Method

	2.6. Manual Test Cases
	2.6.1. Running the manual tests
	2.6.2. Writing the manual tests
	2.6.3. The list of tests
	2.6.3.1. Modules are enabled
	2.6.3.2. Class diagram

	2.7. Generating documentation
	2.7.1. How the ArgoUML web site works
	2.7.2. The ArgoUML documentation
	2.7.3. How we work with documentation

	2.8. Making a release
	2.8.1. The release did not work
	2.8.1.1. Fix the problem yourself.
	2.8.1.2. Delay the release waiting for someone to fix the problem.

	Chapter 3. ArgoUML requirements
	3.1. Requirements for Look and feel
	3.1.1. When multiple visual components are showing the same model element they shall be updated in a consistent manner throughout the application.
	3.1.2. All views of a model element shall be update as soon as the model element is updated.
	3.1.3. Editable views of the model should update the model on each keystroke and mouse click.
	3.1.4. Any text fields that require validation should not be editable directly from a view.
	3.1.5. With dialogs, the model is not updated until the dialog is accepted by the user with valid fields.
	3.1.6. The user shall receive some visual feedback during the edit process of textual UML to indicate whether the text represents valid UML syntax.
	3.1.7. There shall be no indication of an exception on the screen or in the log if it has occured merely because of a user mistyping or not being aware of UML syntax.
	3.1.8. All text fields shall have context sensitive help.

	3.2. Requirements for UML
	3.2.1. ArgoUML shall be a correct implementation of the UML 1.4 model.
	3.2.2. ArgoUML shall implement everything in the UML 1.4 model.

	3.3. Requirements on java and jvm
	3.3.1. Choice of JRE: ArgoUML will support any JRE compatible with a Sun specification of any JRE from Sun that has not begun the Sun End of Life (EOL) process.
	3.3.2. Download and start
	3.3.3. Console output: Logging or tracing information shall not be written to the console or to any file unless explicitly turned on by the user.

	3.4. Requirements set up for the benefit of the development of ArgoUML
	3.4.1. Logging: The code shall contain entries logging important information for the purpose of helping Developers of ArgoUML in finding problems in ArgoUML itself.

	Chapter 4. ArgoUML Design, The Big Picture
	4.1. Definition of subsystem
	4.2. Relationship of the subsystems
	4.3. Low-level subsystems
	4.4. Model subsystems
	4.5. View and Control subsystems
	4.6. Loadable subsystems

	Chapter 5. Inside the subsystems
	5.1. Model
	5.1.1. Factories
	5.1.2. Helpers
	5.1.3. The model event pump
	5.1.3.1. Introduction
	5.1.3.2. Public API
	5.1.3.2.1. How do I register a listener for a certain type event
	5.1.3.2.2. How do I remove a listener for a certain event
	5.1.3.2.3. Hey, I saw some other methods for adding and removing?

	5.1.3.3. Tips
	5.1.3.4. Possible investigation points and improvements

	5.1.4. NSUML specifics
	5.1.5. How to work against the model
	5.1.6. How do I...?

	5.2. Critics and other cognitive tools
	5.2.1. Main classes
	5.2.2. How do I ...?
	5.2.3. org.argouml.cognitive.critics.* class diagram

	5.3. Diagrams
	5.3.1. Multi editor pane
	5.3.1.1. How do I ...?

	5.3.2. How do I add a new element to a diagram?
	5.3.3. How to add a new Fig
	5.3.3.1. Adding to the tool-bar
	5.3.3.2. Changing the graph model
	5.3.3.3. Changing the renderer
	5.3.3.4. Creating a new Fig (explanation 1)
	5.3.3.5. Creating a new Fig (explanation 2)

	5.4. Property panels
	5.4.1. Adding the property panel
	5.4.1.1. Adding a simple list field
	5.4.1.1.1. The list model

	5.4.1.2. Building the field
	5.4.1.3. Adding Property Tab Tool-bar Buttons
	5.4.1.4. Support for stereotypes
	5.4.1.5. Other sorts of fields
	5.4.1.6. How UMLTextField works

	5.5. Persistence
	5.6. Notation
	5.7. Reverse Engineering Subsystem
	5.8. Code Generation Subsystem
	5.9. Java - Code generations and Reverse Engineering
	5.9.1. How do I ...?
	5.9.2. Which sources are involved?
	5.9.3. How is the grammar of the target language implemented?
	5.9.4. Which model/diagram elements are generated?
	5.9.5. Which layout algorithm is used?

	5.10. Other languages
	5.11. The GUI
	5.12. Application
	5.12.1. What is loaded/initialized?
	5.12.2. Details pane
	5.12.2.1. How do I ...?

	5.13. Help System
	5.14. Internationalization
	5.14.1. Organizing translators
	5.14.2. Ambitions for localization
	5.14.3. How do I ...?

	5.15. Logging
	5.15.1. What to Log in ArgoUML
	5.15.2. How to Create Log Entries...
	5.15.2.1. Reasoning around the performance issues

	5.15.3. How to Enable Logging...
	5.15.3.1. ...when running ArgoUML from the command line
	5.15.3.2. ...when running ArgoUML from WebStart
	5.15.3.3. ...when running ArgoUML from NetBeans

	5.15.4. How to Customize Logging...
	5.15.5. References

	5.16. JRE with utils
	5.17. To do items
	5.18. Explorer
	5.18.1. Requirements
	5.18.2. Public APIs and SPIs
	5.18.3. Details of the Explorer Implementation
	5.18.4. How do I ...?

	5.19. Module loader
	5.19.1. What the ModuleLoader does
	5.19.2. Design of the new Module Loader

	5.20. OCL

	Chapter 6. Extending ArgoUML
	6.1. How do I ...?
	6.2. Modules and PlugIns
	6.2.1. Differences between modules and plugins
	6.2.2. Modules
	6.2.2.1. Module Architecture for the old implementation
	6.2.2.2. The ArgoModule interface - used in the old implementation
	6.2.2.3. Module Architecture for the new implementation
	6.2.2.4. The ModuleInterface interface - in the new implementation
	6.2.2.5. Using Modules
	6.2.2.6. How do I ...?

	6.2.3. Plugins
	6.2.3.1. Plugin Architecture
	6.2.3.2. How do I ...?

	6.2.4. Tip for creating new modules (from Florent de Lamotte)

	6.3. How are modules organized in the java code
	6.3.1. Requirements on modules
	6.3.2. How do I ...?

	Chapter 7. Organization of ArgoUML documentation
	7.1. Overview
	7.2. User Manual Plans
	7.2.1. Target Audiences for the User Manual
	7.2.2. Goals for the User Manual
	7.2.2.1. What the User Manual is not (currently)

	7.2.3. Suggested Manual Structure
	7.2.3.1. Tutorial Manual Structure
	7.2.3.2. Reference Manual Structure

	7.2.4. Actions, Priorities and Questions
	7.2.4.1. Actions and priorities
	7.2.4.2. Remaining Questions

	Chapter 8. CVS in the ArgoUML project
	8.1. How to work against the CVS repository
	8.2. Creating and using branches
	1. How do I ...?

	8.3. Other CVS comments
	8.4. CVS repository contents

	Chapter 9. Standards for coding in ArgoUML
	9.1. Rules for writing Java code
	9.2. Rules for the building process
	9.3. Checklist for using sub-products
	9.4. Settings for Eclipse 2
	9.5. Settings for NetBeans
	9.6. Settings for Emacs
	9.7. How to work with Eclipse 3
	9.7.1. Checking out through Eclipse
	9.7.2. Eclipse to help with the ArgoUML coding style
	9.7.3. Eclipse to automatically find problems in the code
	9.7.4. Settings for checkclipse
	9.7.5. Run the JUnit tests

	Chapter 10. Standards For Documentation Writing
	10.1. Introduction
	10.2. Style
	10.3. Document Conventions
	10.4. DocBook Conventions
	10.5. For Emacs Users

	Chapter 11. Processes for the ArgoUML project
	11.1. The big picture for Issues
	11.2. Attributes of an issue
	11.2.1. Priorities
	11.2.2. Resolutions

	11.3. Roles Of The Workers
	11.3.1. The Reporter
	11.3.2. The Resolver
	11.3.3. The Verifier

	11.4. How to resolve an Issue
	11.5. How to verify an Issue that is FIXED
	11.6. How to verify an Issue that is rejected
	11.7. How to Close an Issue
	11.8. How to relate issues to problems in subproducts

	Index
	Appendix A. Further Reading
	A.1. Jason Robbins Dissertation
	A.1.1. Abstract
	A.1.2. Where to find it

	A.2. Martin Skinners Dissertation
	A.2.1. Abstract
	A.2.2. Where to find it

